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INTRODUCTION 

As the size and complexity of integrated circuits 
increases, the speed of such devices becomes limited by 
the interconnections between individual components. 
Optical interconnection is a way around this bottleneck, 
and optical components, instead of wires, can be used to 
send signals, carried by light beams, around VLSI and 
WSI circuits. One possibility in this optical rkgime is to 
create components capable of generating regular arrays 
of light spots, which could be used to distribute clock 
signals (reducing clock skew and cross-talk, Parker 
(1)). or to address arrays of multi quantum well (MQW) 
modulators (Parry et a1 (2)). which would act as optical 
idout pins for the microelectronic circuitry. A problem 
of incorporating optical technology, however, is the 
small size required of the components, and the 
difficulties in aligning such components with 
submicron precision. Anays of microlenses fabricated 
by various means (Daly et a1 (3), Frank et a1 (4)), and 
computer generated holograms (Feldman and Guest 
(5 ) ) .  are two solutions to these problems. In the 
planar-optic configuration (Jahns and Huang (6)), both 
optical and electronic components are aligned 
lithographically on the same plane (fig.1). 

This paper is concerned with the holographic approach 
to array generation, as computer generated holograms 
can be made effectively to multiplex an array of lenses. 
This has the advantage that the optical component may 
be less bulky, and that the uniformity of the image array 
can be made relatively insensitive to the uniformity of 
the light illuminating the hologram. One type of 
hologram, which has been investigated by a number of 
groups (Dammann (7). Vasara et al(8), Imam et al(9)). 
is the Dammann grating. This is a binary, far-field, 
Fourier hologram, which provides a high efficiency and 
uniformity by optimising the phase profile across the 
hologram. ((9) achieved a theoretical efficiency of 
80.9% using repeated fast Fourier transformation and 
simulated annealing on an eight phase level grating.) 
Unfortunately, a standard Dammann grating requires 
Fourier transform lenses, of focal length, f, to be placed 
both before and after the grating in order to form a two 

dimensional array of spots from a point light source. 
Such a system must be 4f in length and the lenses need 
to be carefully aligned and rigidly mounted. Promising 
work with graded refractive index lenses is beginning 
to address these issues (Kirk et a1 (IO)). In this paper 
we describe the design of a self-focusing 
Fresnel-Dammann grating, which is a computer 
generated hologram and does not make use of any 
refractive elements. The self-focusing Fresnel- 
Dammann grating is a combination of both near field 
Fresnel, and far-field Dammann, holograms and is both 
a compact array generator and requires no alignment 
since it is a single optical element. 

Another approach to lensless array generation is to 
make use of Fresnel holograms, which produce an 
image in the near field without requiring Fourier 
transformation. However, problems can occur with this 
type of hologram when large numbers of spots are 
required in the image plane, leading to undesired, 
although interesting, results. These are due to the high 
information density in the hologram plane, the limited 
resolution of the pixels available to encode the 
hologram, and interference between the spots in the 
image plane. This paper presents a Fresnel binary 
hologram that generates an array of 8x8 spots and 
overcomes these problems. It was also possible to 
design such a hologram to operate at an oblique angle 
of incidence along a slanted axis. Such a hologram is 
ideal for spot array generation in the compact and 
robust planar optic configuration (fig.1). 

THE SELF-FOCUSING FRESNEL-DAMMANN 
GRATING 

We begin by outlining the considerations which led us 
to develop the Fresnel-Dmmann grating. When light of 
wavelength, h, is incident on a screen or transparency 
which has a periodic transmissivity (of repeat distance, 
d, of the order of several wavelengths), the diffracted 
plane waves will travel from the object at angles ( e,) 
given by the grating equation: 

nh = d sin en (1) 
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where the diffraction order, n is an integer. If a lens of 
focal length, f, is placed after the object, these waves 
are bought to a focus in the focal plane of the lens. 
(The form of the transmissivity within one period 
determines the overall intensity envelope of the spots in 
the focal plane.) The spacing, s, of the diffraction 
orders in the image is given approximately (because 
sin el 5 s / f for small e,) by: 

s = € k / d  (2) 

The lens is acting as a Fourier transform element and is 
converting the angular distribution into a spatial 
distribution. Such an operation can also be performed 
by a lens when the lens is placed closely in contact with 
the periodically transparent object. Although the 
complex light field in the focal plane of the lens will be 
multiplied by a quadratic phase factor, the intensity 
distribution will correctly take the form of the Fourier 
transform. Now consider what would occur if two such 
periodic transparencies were placed orthogonally i.e. 
crossed and placed in contact with the lens. By a similar 
argument a two-dimensional, albeit non-uniform, 
regular m a y  of light spots would result. Now, if the 
object is replaced by a Dammann phase grating and if, 
instead of a refractive lens, a binary phase Fresnel zone 
plate (Fzp) were used for the focusing, we may imagine 
a situation in which the FZP is placed right up against 
the Dammann grating. In this case, the whole structure 
would generate a regular array of uniform-intensity 
light spots, of limited extent, in the focal plane of the 
FZP (due to the nature of the diffraction orders 
produced by a Dammann grating). This situation is 
equivalent to one in which the grating and FZP are 
fused into a single element, such that the total phase 
shift at any point on the element is equal to the sum of 
the phase shifts that would have been induced by the 
combination of the FZP and the grating at that point. In 
this way, we can make a single element, self-focusing 
Fresnel-Dammann grating, which requires no 
alignment. 

The self-focusing Fresnel-Dammann grating (SFD) 
presented in this paper is based on a separable, two 
dimensional Dammann grating, created using crossing 
points taken from Momson (1 1). The ten crossing 
points used, defined a grating to give an 8x8 spot array, 
and the repeat distance, d, for this structure was 
101.248pm in both the x- and y-directions. The 
crossing points were calculated by Momson to suppress 
every even order (including the zeroth), and all orders 
above the sixteenth. The grating was computer 
generated as a 3.174 x 3.174 mm array of 2 pm square 
pixels, and stored as a binary file, each bit representing 
a pixel (0 for a zero phase change, and 1 for n). 

In the same way, a Fresnel zone plate was generated 
and stored. Its size and resolution were the same as 
those for the grating, and its focal length, f, was 10 mm 
(for light of wavelength, h, 632.8 nm). This zone plate 

was used as the Fourier transform lens for the 
Dammann grating and, because there was a direct 1:l 
correspondence between the pixels in the grating and in 
the zone plate files, the two could be combined directly 
to form a single optical element. This was done by 
multiplying the bits of the two binary files in an 
exclusive-OR fashion, and producing a third binary file 
of the same size. The exclusive-OR operation 
corresponds to the combination, modulo 27t, of two 
binary phase gratings. 

When illuminated by a plane wave, the above SFD 
generates an 8x8 array of spots, separated by 125 pm, at 
a distance of 10 mm from the SFD plane. This spot 
spacing is twice that given by eqn. (2), because the 
Dammann structure used eliminates every even grating 
order. Another point to consider in the design of the 
SFD, is the numerical aperture of the Fresnel lens. This 
must be large enough to image all of the points in the 
array, and results in the condition that the image array 
must lie within an area equal to that of the Fresnel lens. 
This can be used to advantage by choosing the size of 
the SFD to be just large enough to accommodate the 
desired output array, and small enough that higher 
orders of diffraction are suppressed. The SFD pattem 
can be seen in fig.2, and its output, when illuminated by 
a plane wave from a HeNe laser, can be seen in fig.3. 
The SFD used to obtain the output shown in fig.3 was 
an amplitude and not a phase hologram. The 
manufacture of a phase hologram would give an output 
contrast and efficiency rather better than that shown in 
the figure. A drawback of using a simple binary zone 
plate to focus the Dammann output, is that the increased 
efficiency of the grating is lost to the multiple foci of 
the Fresnel lens. However, combining the grating with 
a multi-level Fresnel zone plate could, in principle, 
eliminate this problem. Similarly, multi-level 
Dammann gratings could be combined with multi-level 
Fresnel zone plates. 

An interesting property of the SFD is the wavelength 
independence (to first order) of the spot spacing -as the 
wavelength of the incident light increases, the focal 
length of the Fresnel zone plate decreases, whilst being 
compensated by the increased dispersion of the 
Dammann grating. Now we will present a first order 
analysis of this effect. If we consider first the 
construction of the zones in a Fresnel zone plate (fig.4), 
we can obtain an exact expression for its focal length, f, 
in terms of the size of the first zone. In fig.4, the phase 
difference, &I$, between the origin and a point a 
distance, r, from the origin (in the plane of the zone 
plate) due to a wave emanating from a point source a 
distance, f, away from this plane, is given by: 

S$ = k ( d(r2+f’) - f ] (3) 

If R (the size of the first zone) is defined as the value of 
r when &I = E, then we may write fin terms of R 
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f = (4R2 - h2) / 4h (4) 

Considering now the spots diffracted from a periodic 
structure with a repeat distance, d, (bought to a focus by 
a lens of focal length, f, which is positioned against the 
grating, figS), we can see that, from the grating eqn. 
(1): 

sin 8, = nh / d ( 5 )  

and, therefore, that: 

xn = f tan 8, = f [ nh/d(d2 - n2h2) ) (6)  

where x, is the position of the nth order diffracted spot. 
Combining the properties of the zone plate and the 
grating, by substituting eqn. (2) into eqn. (4), we can get 
the following exact expression for the position of the 
spots in the image plane: 

x, = (nR2 /d )  ( 1  - ( l ~ / 2 R ) ~  ) I d [  1 - (nIL/d)2 ) (7) 

Expanding this equation to O(h2) using the binomial 
expansion, we get the following approximate 
expression for x,, when nh << d: 

x, = (nR2 / d) [ 1 + h2[ (n2/2d2) - ( 1/4R2) ) ] (8) 

Provided, in addition, that h << R, then x, = (nR2 / d), 
and the spot spacing is independent of the wavelength. 
k. (R = 80 pm in our case.) As long as the 
wavelength-dependent focal plane shifts are not 
critical, this property of the SFD could be very useful. 
(From (4). 6f / f = -6h / I . )  For instance, an SFD might 
be designed to act as a wavelength multiplexed fanout 
coupler to address fibre*ptic bundles. 

HIGH FANOUT FRESNEL HOLOGRAMS 

Another approach to lensless array generation is to 
design a suitable Fresnel hologram (Kawai and Kohga 
(12), Kress and Lee (13)). This can be done simply. by 
calculating the interference pattern at the hologram 
plane between waves diverging from the desired input 
beam and waves converging to the desired image array. 
In our calculation we ignored the amplitude variations 
of the interference fringes over the hologram plane, and 
considered only the phase profile. The phase difference 
in the hologram piane, 6$(x,y), between reference and 
image waves was given by: 

where x and y are coordinates i n  the hologram plane. 

and all $s represent phases in the hologram plane; qr is 
the phase of the reference beam, 9, is the phase of the 
image array taken as a whole, and the $i are the phases 
of the individual light spots, i ,  in the image. The 
hologram is stored as a binary pattem such that, when 
cos &$> 0, 1 is stored, and when cos &$ < 0 , O  is stored. 

The geometry used in our case may be seen in fig.6. 
The reference was a point Source, situated away from 
the hologram at twice the hologram's "focal length" 
(20. The image array was symmetric about an axis 
through the reference source and the centre of the 
hologram, and this axis made an angle of 8 with the 
hologram normal. The image was formed at a distance 
of 2f from the hologram. Two holograms were 
generated, one for an incident angle, 8, of 0', and the 
other for an angle of 30'. The latter was used in the 
planar-optic configuration of fig. 1. Both holograms 
were designed with a pixel size of 2 pm, and produced 
an 8x8 array of spots separated by 125pm when 
illuminated by a plane beam of light. Laser light of 
wavelength 632.8 nm was used in the 0' case, and a 
spatially coherent white light source (formed by passing 
white light through a pinhole) was used for the 30' 
hologram. The 0' hologram had a focal length of 
10 mm, and measured 3.174 x 3.174 mm, whilst the 30" 
design had a focal length (at 632.8 nm) of 13.856 mm, 
measured 2.386 x 2.066 mm and was designed for use 
in glass of refractive index 1.457. 

As mentioned above. high information density in the 
hologram plane (requiring detail in the hologram finer 
than the pixel size), and interference between spots in 
the image plane, can lead to undesirable results in such 
holograms. To overcome these problems, we adjusted 
the relative phases of the spots in the image array. This 
corresponds merely to adding a constant phase term 
(@") to each of the Qi in eqn. (9). If the function of the 
image array depends only on the amplitude of the s ots, 
and not on their phases, we can choose any set of I$+ we 
like, without affecting, in theory, the image produced. 
In practice, however, our choice of $: can be very 
important because each image spot has higher orders of 
diffraction associated with it, and these interfere with 
the other image spots. I f  we arrange for these higher 
diffraction orders to interfere destructively, we can 
ensure that the image array is the one we expect. The 
choice of the also affects the hologram pattem, and 
should be chosen to ensure that the spatial frequencies 
in the hologram do not require too high a resolution 
from the hologram writer. We have chosen two sets of 
0,": in the first set. the 4,'' are such that the phase due 
to each spot is zero at the origin of the hologram plane, 
and in the second set. the 0," were randomised. The 
first choice was arbitrary, and was originally made for 
convention, so that hologram patterns could be 
compared. The second choice was made with the 
express intention of causing destructive interference 
between the unwanted diffraction orders, thereby 

B 
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increasing the efficiency of the hologram. The 
p”f”.””” of the two sets of 4’ for the 0’ hologram 
IS compared in fig.7 (as before, amplitude holograms 
were used, as these were all that were available at the 
time of Writing). As can be seen, the non-random set of 
4’ is a rather poor choice for an 8x8 array generator 
(the pa” of 8x8 spots not appearing at all), whilst the 
randomised 4’ allow the hologram to work 
successfully. Pichues of the holograms themselves may 
be seen in fig.8. The perfmance of the 30’ amplitude 
hologram with randomised phases can be seen in fig.9. 
This was placed in a planar optic configuration (fig. 1) 
for this experiment and the amplitude hologram was 
used in reflection. 

The dramatic change in hologram performance upon the 
introduction of ‘a random set of t$:, indicates the 
possibility of choosing an optimum set which would 
yield a maximum diffraction efficiency and spot 
uniformity. This would require the use of repeated 
Fresnel transforms, and an optiinisation algorithm such 
as simdatedannealing (13). 

CONCLUSION 

We have described the design and demonstrated the 
performance of two types of lensless array generator. 
The Self-focusing Fresnel-Dammann grating (SFD), 
and the Fresnel hologram. The SFD is based on a 
conventional Dammann grating, but obviates the need 
for extraneous Fourier transform lenses, by combining 
the grating with a Fresnel zone plate, in an 
exclusive4R fashion. No alignment is required and no 
bulky or dispersive refractive elements are used. The 
SFD can be designed to suppress higher diffraction 
orders, and the spacing of the spots it produces is 
wavelength independent. The full efficiency of the 
Dammann design could be restored by combining the 
grating with a multi-level Fresnel lens. A multi-level 
Dammann grating could also be used. 

The Fresnel hologram can be designed for high fanout, 
but the design must take into account the phases of the 
light spots in the image array. We have demonstrated 
this for an 8x8 fanout element, where a set of random 
phases in the output gave rise to a satisfactory 
performance, whilst another set of phases gave an 
undesired, although interesting, result. It should be 
possible to optimise these phases to produce a more 
efficient hologram. We have also demonstrated a 30’ 
slanted axis, random phase design, generating a two 
dimensional array of 8x8 beams, used in reflection, and 
operating in a multiple reflection, planar-optic 
configuration. This type of hologram will be of benefit 
for compact and rugged optical clock distribution and 
for optical addressing of modulator arrays on VLSI and 
WSI circuits. 
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