52 research outputs found

    Production Of Dna Minicircles Less Than 250 Base Pairs Through A Novel Concentrated Dna Circularization Assay Enabling Minicircle Design With Nf-Îşb Inhibition Activity

    Get PDF
    Double-stranded DNA minicircles of less than 1000 bp in length have great interest in both fundamental research and therapeutic applications. Although minicircles have shown promising activity in gene therapy thanks to their good biostability and better intracellular trafficking, minicircles down to 250 bp in size have not yet been investigated from the test tube to the cell for lack of an efficient production method. Herein, we report a novel versatile plasmidfree method for the production of DNA minicircles comprising fewer than 250 bp. We designed a linear nicked DNA double-stranded oligonucleotide bluntended substrate for efficient minicircle production in a ligase-mediated and bending protein-assisted circularization reaction at high DNA concentration of 2M. This one pot multi-step reaction based-method yields hundreds of micrograms of minicircle with sequences of any base composition and position and containing or not a variety of site-specifically chemical modifications or physiological supercoiling. Biochemical and cellular studies were then conducted to design a 95 bp minicircle capable of binding in vitro two NF-κB transcription factors per minicircle and to efficiently inhibiting NF-κB-dependent transcriptional activity in human cells. Therefore, our production method could pave the way for the design of minicircles as new decoy nucleic acids. © The Author(s) 2016.45

    An influenza virus-inspired polymer system for the timed release of siRNA

    Get PDF
    Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases

    Peptide-based gene delivery systems

    No full text

    Histidylated polycationic molecules for nucleic acids transfer

    No full text

    Histidine-rich peptides and polymers for nucleic acids delivery.

    No full text
    International audienceNucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3-4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems

    Evidence for plasmid DNA exchange after polyplex mixing

    No full text
    International audienceThe self-assembly of a plasmid DNA (pDNA) with cationic polymers or cationic liposomes forms nanosized supramolecular structures called lipoplexes, polyplexes and lipopolyplexes. Here, we report that when two polyplex preparations made using the same polymer and the same pDNA but labelled with two different fluorophores are mixed together, pDNA molecules are exchanged. Indeed, when Flu-pDNA complexed with histidinylated lPEI (Flu-pDNA/His-lPEI) polyplexes are mixed with Cy5-pDNA complexed with histidinylated lPEI (Cy5-pDNA/His-lPEI) polyplexes, a high quantity of polyplexes emitting dual fluorescence is observed and FRET indicates that one single polyplex contains two kinds of fluorescent pDNA molecules. This phenomenon depends on the polymer-type and the strength of the pDNA/polymer interaction. No exchange is observed with polylysine polyplexes, caged His-lPEI polyplexes, lipoplexes, lipopolyplexes or when His-lPEI polyplexes are mixed with lipoplexes. Our results suggest that aggregation or collapse of polyplexes occurs after their interaction leading to their unpackaging followed by the formation of new polyplexes with the exchange of pDNA

    Histidine containing peptides and polypeptides as nucleic acid vectors

    No full text
    • …
    corecore