424 research outputs found
Nonlinear Soil Properties Estimated from Strong Motion Accelerograms
A rational procedure is developed for estimating dynamic soil properties from strong motion accelerograms obtained only at the ground surface. The method consisting of spectrum analysis and multi-reflection analysis could permit evaluation of time histories of shear modulus versus shear strain in the soil during an earthquake. The method is applied to four sites where the soil profile is relatively simple and where several strong motion records are available. The analytical results show that (1) the first predominant period of surface soil increases with an increase in shear strain developed in the soil, (2) the strain-dependent shear moduli evaluated from strong motion records are in fairly good agreement with laboratory test results in a strain range from 10-5 to 10-3, and (3) the shear modulus ratio is better correlated with peak particle velocity at the ground surface than with peak acceleration
Atmospheric neutrino flux at INO, South Pole and Pyh\"asalmi
We present the calculation of the atmospheric neutrino fluxes for the
neutrino experiments proposed at INO, South Pole and Pyh\"asalmi. Neutrino
fluxes have been obtained using ATMNC, a simulation code for cosmic ray in the
atmosphere. Even using the same primary flux model and the interaction model,
the calculated atmospheric neutrino fluxes are different for the different
sites due to the geomagnetic field. The prediction of these fluxes in the
present paper would be quite useful in the experimental analysis.Comment: 12Pages,9Fig
Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data
Using the ``modified DPMJET-III'' model explained in the previous paper, we
calculate the atmospheric neutrino flux. The calculation scheme is almost the
same as HKKM04 \cite{HKKM2004}, but the usage of the ``virtual detector'' is
improved to reduce the error due to it. Then we study the uncertainty of the
calculated atmospheric neutrino flux summarizing the uncertainties of
individual components of the simulation. The uncertainty of -production in
the interaction model is estimated by modifying FLUKA'97 and Fritiof 7.02 so
that they also reproduce the atmospheric muon flux data correctly, and the
calculation of the atmospheric neutrino flux with those modified interaction
models. The uncertainties of the flux ratio and zenith angle dependence of the
atmospheric neutrino flux are also studied
High pressure X-ray preionized TEMA-CO2 laser
The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20 atm, yielding a specific laser output in the order of 35 J/l
Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model
We present the calculation of the atmospheric neutrino fluxes with an
interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion
Transport code System). The JAM interaction model agrees with the HARP
experiment a little better than DPMJET-III. After some modifications, it
reproduces the muon flux below 1~GeV/c at balloon altitudes better than the
modified-DPMJET-III which we used for the calculation of atmospheric neutrino
flux in previous works. Some improvements in the calculation of atmospheric
neutrino flux are also reported.Comment: 46 pages, 28 figure
Construction of microfluidic biochips with enhanced functionalities using 3D femtosecond laser direct writing
The extreme nonlinear interaction betweenfemtosecond laser pulses and large-band-gapmaterials has enabled three-dimensional (3D)microfabrication inside transparent materials. In thepast decade, this technique has been used forcreating a variety of functional components in glassmaterials, including microoptics, microfluidics,microelectronics, micromechanics, etc. Using thesebuilding blocks, femtosecond laser microfabricationalso allows for construction of highly integratedmicrodevices. Here, we provide an overview of ourlatest progress made along this direction, includingfocal spot engineering and nanofluidic fabrication.In particular, we show that 3D micro-/nano-fluidiccomponents with arbitrary geometries can bedirectly formed inside glass. This opens uppromising prospects for a broad spectrum ofapplications based on compact and complex 3Dmicrofluidic networks. Our work shows that thistechnique holds promise for fabricating 3D hybridmicro-systems, such as Lab-on-a-chip devices andMicro Total Analysis Systems in the future
- …