969 research outputs found
Exploring pathways for sustainable water management in river deltas in a changing environment
Exploring adaptation pathways into an uncertain future can support decisionmaking in achieving sustainable water management in a changing environment. Our objective is to develop and test a method to identify such pathways by including dynamics from natural variability and the interaction between the water system and society. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Our approach is to explore pathways using multiple realisations of transient scenarios with an Integrated Assessment Meta Model (IAMM). This paper presents the first application of the method using a hypothetical case study. The case study shows how to explore and evaluate adaptation pathways. With the pathways it is possible to identify opportunities, threats, timing and sequence of policy options, which can be used by policymakers to develop water management roadmaps into the future. By including the dynamics between the water system and society, the influence of uncertainties in both systems becomes clearer. The results show, among others, that climate variability rather than climate change appears to be important for taking decisions in water management
Effect analysis of transient scenarios for successful water management strategies
Recent scenario studies on water management focus on one or two projection years and the effects on the water system and functions. The future is however more complex and dynamic. Therefore, we analyse transient scenarios in order to evaluate the performance of water management strategies. Current available simulation tools are not suitable for this purpose. Therefore, we have developed and used a tool to simulate 50-100 year long time series and that is good and fast enough to simulate the effects of these scenarios and strategies on the water system and the interaction with the human system. We present the first step by means of a case study
Sediment management and the renewability of floodplain clay for structural ceramics
The Netherlands has vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. Most clay is extracted from the so-called embanked floodplains along the rivers Rhine and Meuse, areas that are flooded during high-discharge conditions. Riverside clay extraction is-at least in theory-compensated by deposition. Based on a sediment balance (deposition versus extraction), we explore the extent to which clay can be regarded as a renewable resource, with potential for sustainable use. Beyond that, we discuss the implications for river and sediment management, especially for the large engineering works that are to be undertaken to increase the discharge capacities of the Rhine and Meuse. Extraction rates are based on production statistics for clay, as well as those for fired end-products. Deposition rates are estimated from published and unpublished geological data (clay volumes and thicknesses, datings, etc.) and from morphological modeling studies. Comparisons between extraction and deposition are made at three different time-space scales: (1) long term (post-1850)/large scale (all Dutch floodplains), (2) present/large scale, and (3) present/site scale. The year 1850 is relevant because it approximately marks the beginning of the current, fully engineered river systems, in which depositional processes are constrained by dikes and groynes. As the Industrial Revolution began in the same period, post-1850 sediments can be identified by their pollution with heavy metals. (1) We estimate the post-1850 clay volume in situ at about 0.20 km(3), and the total extracted volume in the same period at about 0.17 km(3). This puts the net long-term average deposition rate of clay at similar to 1.3 million m(3)/year and the corresponding extraction rate at similar to 1.1 million m(3)/year. (2) Current accumulation is approximately 0.4 million m(3)/year and expected to increase, and current extraction is about 0.7 million m(3)/year and expected to decrease. (3) Clay extraction creates a depression that has an increased sediment-trapping efficiency. This local effect is not considered explicitly in large-scale morphological modeling. Based on maximum observed sedimentation rates, we estimate that replenishment of a clay site takes in the order of 150 years. As clay extraction lowers some 0.5 km(2) of floodplain yearly, a surface area of approximately 75 km(2) would be required for sustainable clay extraction. This is about 1/6 of the total surface area of the embanked floodplains. On the long term, clay extraction from the embanked floodplain depositional environment has been sustainable. At strongly decreasing deposition rates, the ratio between extraction and replenishment seems to have shifted towards unsustainable. However, current sedimentation is estimated conservatively. The site-scale approach suggests that, even if extraction would currently exceed deposition, this could be resolved with sediment management, that is, with site restoration measures aimed at higher sediment-trapping efficiency. Our results have implications for river engineering, especially where substantial digging is involved (floodplain lowering, high-discharge bypass channels, obstacle removal). First, this inevitably affects the clay resources that we studied, while resource sterilization should be avoided. Secondly, the effect that any form of digging has on subsequent sedimentation-increased rates-relates to long-term river maintenance. We conclude that floodplain clay is a renewable resource, especially if managed accordingly. Beyond that, we established that clay extraction is a significant, lasting factor in floodplain evolution along the Rhine and Meuse Rivers. The interests of the extractive industry and river managers could be served jointly with sediment management plans that are based on sediment-budget analyse
Zitstokgebruik en beweeglijkheid
Naar aanleiding van de aanbevelingen van de Commissie Alders heeft het Praktijkcentrum 'Het Spelderholt' onderzoek uitgevoerd met drie soorten langzaam groeiende vleeskuikens. Naast het bepalen van de technische en slachterijresultaten is ook gekeken naar het gedrag van de dieren. In dit artikel wordt ingegaan op het zitstokgebruik en de mate van beweeglijkheid van die kuikens in vergelijking met een gangbaar soort vleeskuiken. Uit dit onderzoek kwam naar voren dat kuikens van de langzamer groeiende soorten meer gebruik maken van de zitstokken en actiever zijn dan het 'gangbare' vleeskuiken
Lower Extremity Complaints in Runners and Other Athletes
Running is one of the most accessible sports, and probably for this reason, is practiced by many persons all over the world. However, besides the positive health effects of running there are some concerns about the high incidence of running injuries, especially to the lower extremities. The results of a systematic review on lower extremity injuries of long-distance runners showed an incidence of running injuries ranging from 19.4% to 79.3%.
The results of the Rotterdam marathon revealed a one-year prevalence of 48.3%. The incidence of lower extremity injuries occurring during the marathon was 18.2%; most of these injuries occurred in the calf, knee and thigh. The following factors were associated with the occurrence of lower extremity injuries: participating more than six times in a race in the previous 12 months (OR 1.66), a history of running injuries (OR 2.62), high education level (OR 0.73) and daily smoking (OR 0.23). Among the modifiable risk factors studied, a training distance less than 40 kilometres a week is a strong protective factor of future calf injuries, and regular interval training is a strong protective factor for knee injuries.
At 3-months follow-up, 25.5% of th
Risk models for lower extremity injuries among short- and long distance runners: A prospective cohort study
© 2018 Background: Running injuries are very common. Risk factors for running injuries are not consistently described across studies and do not differentiate between runners of long- and short distances within one cohort. Objectives: The aim of this study is to determine risk factors for running injuries in recreational long- and short distance runners separately. Design: A prospective cohort study. Methods: Recreational runners from four different running events are invited to participate. They filled in a baseline questionnaire assessing possible risk factors about 4 weeks before the run and one a week after the run assessing running injuries. Using logistic regression we developed an overall risk model and separate risk models based on the running distance. Results: In total 3768 runners participated in this study. The overall risk model contained 4 risk factors: previous injuries (OR 3.7) and running distance during the event (OR 1.3) increased the risk of a running injury whereas older age (OR 0.99) and more training kilometers per week (OR 0.99) showed a decrease. Models between short- and long distance runners did not differ significantly. Previous injuries increased the risk of a running injury in all models, while more training kilometers per week decreased this risk. Conclusions: We found that risk factors for running injuries were not related to running distances. Previous injury is a generic risk factor for running injuries, as is weekly training distance. Prevention of running injuries is important and a higher weekly training volume seems to prevent injuries to a certain extent
- …