40 research outputs found

    The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression

    Get PDF
    Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics and cell-matrix interaction

    Exercise training alters lipoprotein particles independent of brown adipose tissue metabolic activity

    Get PDF
    IntroductionNew strategies for weight loss and weight maintenance in humans are needed. Human brown adipose tissue (BAT) can stimulate energy expenditure and may be a potential therapeutic target for obesity and type 2 diabetes. However, whether exercise training is an efficient stimulus to activate and recruit BAT remains to be explored. This study aimed to evaluate whether regular exercise training affects coldā€stimulated BAT metabolism and, if so, whether this was associated with changes in plasma metabolites.MethodsHealthy sedentary men (nĀ =Ā 11; aged 31 [SD 7] years; body mass index 23 [0.9] kgĀ māˆ’2; VO2 maxĀ 39 [7.6] mLĀ mināˆ’1Ā kgāˆ’1) participated in a 6ā€week exercise training intervention. Fasting BAT and neck muscle glucose uptake (GU) were measured using quantitative [18F]fluorodeoxyglucose positron emission tomographyā€“magnetic resonance imaging three times: (1) before training at room temperature and (2) before and (3) after the training period during cold stimulation. Cervicoā€thoracic BAT mass was measured using MRI signal fat fraction maps. Plasma metabolites were analysed using nuclear magnetic resonance spectroscopy.ResultsCold exposure increased supraclavicular BAT GU by threefold (pĀ pĀ pĀ pĀ =Ā 0.01) and decreased visceral fat (pĀ =Ā 0.02) and cervicoā€thoracic BAT mass (pĀ =Ā 0.003). Additionally, training decreased very lowā€density lipoprotein particle size (pĀ =Ā 0.04), triglycerides within chylomicrons (pĀ =Ā 0.04) and small highā€density lipoprotein (pĀ =Ā 0.04).ConclusionsAlthough exercise training plays an important role for metabolic health, its beneficial effects on whole body metabolism through physiological adaptations seem to be independent of BAT activation in young, sedentary men.</div

    Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men

    Get PDF
    Aims: To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity.Participants and methods: Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m(2) [95% CI 24.1-26.3], peak oxygen uptake (VO2peak) 34.8 mL/kg/min [95% CI 32.1, 37.4]) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[F-18] flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions.Results: Training improved VO2peak (P =.0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P =.0009) and femoral subcutaneous WAT (P =.02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (> 2.9 mu mol/100 g/min; n = 6) or low BAT (< 2.9 mu mol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P =.02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] mu mol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group.Conclusions: Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation

    The alpha-kinase family: an exceptional branch on the protein kinase tree

    Get PDF
    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer

    Nutrition and cultivation of micro organisms.

    No full text

    Growth in continuous culture.

    No full text
    corecore