17 research outputs found

    Two Functionally Distinct Isoforms of TL1A (TNFSF15) Generated by Differential Ectodomain Shedding

    Get PDF
    Tumor necrosis factor–like cytokine 1A (TL1A) is expressed in endothelial cells and contributes to T-cell activation, via an extracellular fragment TL1AL72-L251, generated by ectodomain shedding. Fragments of TL1A, referred to as vascular endothelial growth inhibitor, were found to induce growth arrest and apoptosis in endothelial cells; however, the underlying mechanisms remained obscure. Here, we show that full-length TL1A is the major detectable gene product in both human umbilical vein endothelial cells and circulating endothelial progenitor cells. TL1A expression was significantly enhanced in senescent circulating endothelial progenitor cells, and knockdown of TL1A partially reverted senescence. TL1A overexpression induced premature senescence in both circulating endothelial progenitor cells and human umbilical vein endothelial cells. We also identified a novel extracellular fragment of TL1A, TL1AV84-L251, resulting from differential ectodomain shedding, which induced growth arrest and apoptosis in human umbilical vein endothelial cells. These findings suggest that TL1A is involved in the regulation of endothelial cell senescence, via a novel fragment produced by differential ectodomain shedding

    Role of endonuclease G in senescence-associated cell death of human endothelial cells

    Get PDF
    Mitotic cells in culture show a limited replicative potential and after extended subculturing undergo a terminal growth arrest termed cellular senescence. When cells reach the senescent phenotype, this is accompanied by a significant change in the cellular phenotype and massive changes in gene expression, including the upregulation of secreted factors. In human fibroblasts, senescent cells also acquire resistance to apoptosis. In contrary, in human endothelial cells, both replicative and stress-induced premature senescence is accompanied by increased cell death; however mechanisms of cell death are poorly explored. In this communication, we addressed the role of endonuclease G (EndoG), a mitochondrial mediator of caspase-independent cell death, in senescence-associated cell death of human endothelial cells. Using immunofluorescence microscopy, we found, that EndoG is localized in the mitochondria in young cells, but relocalizes to the nucleus upon senescence. When EndoG gene expression was downregulated by lentiviral shRNA vectors, we found a significant reduction in the replicative life span and a corresponding increase in cell death. We also observed a slight shift in the cell death phenotype from necrosis to apoptosis. Together these observations suggest an important role of EndoG in the senescence program of human endothelial cells

    Identification of Hsc70 as target for AGE modification in senescent human fibroblasts

    Get PDF
    Cellular senescence is known as a potent mechanism of tumor suppression, and cellular senescence in vitro also reflects at least some features of aging in vivo. The Free Radical Theory of aging suggests that reactive oxygen species are important causative agents of aging and cellular senescence. Besides damage of nucleic acids and lipids, also oxidative modifications of proteins have been described as potential causative events in the senescence response. However, the identity of protein targets for post-translational modifications in senescent cells has remained unclear. In the present communication, we analyzed the occurrence of oxidative posttranslational modifications in senescent human endothelial cells and dermal fibroblasts. We found a significant increase in the level of protein carbonyls and AGE modification with senescence in both cell types. Using 2D-Gel electrophoresis and Western Blot we found that heat shock cognate protein 70 is a bona fide target for AGE modification in human fibroblasts
    corecore