39 research outputs found

    Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several <it>Echinacea </it>species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of <it>E. purpurea </it>([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures.</p> <p>Results</p> <p>Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (<it>Cdh10</it>, <it>Itga6</it>, <it>Cdh1</it>, <it>Gja1 </it>and <it>Mmp8</it>), or were chemokines (<it>Cxcl2, Cxcl7) </it>or signaling molecules (<it>Nrxn1, Pkce </it>and <it>Acss1</it>). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. <it>In vitro </it>flow cytometry analysis of chemotaxis-related receptors and <it>in vivo </it>cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups.</p> <p>Conclusion</p> <p>Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of <it>Echinacea </it>or other candidate medicinal plants.</p

    Fucoidan Can Function as an Adjuvant In Vivo to Enhance Dendritic Cell Maturation and Function and Promote Antigen-Specific T Cell Immune Responses

    Get PDF
    Fucoidan, a sulfated polysaccharide purified from brown algae, has a variety of immune-modulation effects, including promoting antigen uptake and enhancing anti-viral and anti-tumor effects. However, the effect of fucoidan in vivo, especially its adjuvant effect on in vivo anti-tumor immune responses, was not fully investigated. In this study, we investigated the effect of fucoidan on the function of spleen dendritic cells (DCs) and its adjuvant effect in vivo. Systemic administration of fucoidan induced up-regulation of CD40, CD80 and CD86 expression and production of IL-6, IL-12 and TNF-α in spleen cDCs. Fucoidan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in an IL-12-dependent manner. When used as an adjuvant in vivo with ovalbumin (OVA) antigen, fucoidan promoted OVA-specific antibody production and primed IFN-γ production in OVA-specific T cells. Moreover, fucoidan enhanced OVA-induced up-regulation of MHC class I and II on spleen cDCs and strongly prompted the proliferation of OVA-specific CD4 and CD8 T cells. Finally, OVA immunization with fucoidan as adjuvant protected mice from the challenge with B16-OVA tumor cells. Taken together, these results suggest that fucoidan can function as an adjuvant to induce Th1 immune response and CTL activation, which may be useful in tumor vaccine development

    Il Complesso Liguride Auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione preappenninica ed i suoi rapporti con l'arco calabro.

    No full text

    CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide.

    No full text
    The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant

    Assessment of immunogenicity of human Melan-A peptide analogues in HLA-A*0201/Kb transgenic mice

    No full text
    Previous studies have shown that substitution of single amino acid residues in human Melan-A immunodominant peptides Melan-A27-35 and Melan-A26-35 greatly improved their binding and the stability of peptide/HLA-A*0201 complexes. In particular, one Melan-A peptide analogue was more efficient in the generation of Melan-A peptide-specific and melanoma-reactive CTL than its parental peptide in vitro from human PBL. In this study, we analyzed the in vivo immunogenicity of Melan-A natural peptides and their analogues in HLA-A*0201/Kb transgenic mice. We found that two human Melan-A natural peptides, Melan-A26-35 and Melan-A27-35, were relatively weak immunogens, whereas several Melan-A peptide analogues were potent immunogens for in vivo CTL priming. In addition, induced Melan-A peptide-specific mouse CTL cross-recognized natural Melan-A peptides and their analogues. More interestingly, these mouse CTL were also able to lyse human melanoma cell lines in vitro in a HLA-A*0201-restricted, Melan-A-specific manner. Our results indicate that the HLA-A*0201/Kb transgenic mouse is a useful animal model to perform preclinical testing of potential cancer vaccines, and that Melan-A peptide analogues are attractive candidates for melanoma immunotherapy

    Induction of potent antitumor CTL responses by recombinant vaccinia encoding a melan-A peptide analogue.

    No full text
    There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients

    Cancer vaccine design: a novel bacterial adjuvant for peptide-specific CTL induction

    No full text
    The recent identification of tumor Ags as potential vaccines has prompted the search for efficient adjuvants and delivery systems, especially in the case of peptide-based vaccination protocols. Here, we investigated the adjuvant potential of the recombinant 40-kDa outer membrane protein of Klebsiella pneumoniae (P40) for specific CTL induction. We studied the CTL response induced in HLA-A*0201/K(b) transgenic mice immunized with peptides derived from two melanoma-associated differentiation Ags, the HLA-A*0201-restricted decapeptide Melan-A(26--35) substituted at position 2 and the K(b)-restricted tyrosinase-related protein 2(181--188) T cell epitope. We found that both peptides are able to generate a specific CTL response when mixed with the protein in the absence of conventional adjuvant. This CTL response is a function of the amount of P40 used for immunization. Moreover, the CTL response generated against the tyrosinase-related protein 2(181-188) peptide in presence of P40 is associated with tumor protection in two different experimental models and is independent of the presence of CD4(+) T lymphocytes. Thus, the recombinant bacterial protein P40 functions as a potent immunological adjuvant for specific CTL induction

    Cancer vaccine design: a novel bacterial adjuvant for peptide-specific CTL induction

    No full text
    The recent identification of tumor Ags as potential vaccines has prompted the search for efficient adjuvants and delivery systems, especially in the case of peptide-based vaccination protocols. Here, we investigated the adjuvant potential of the recombinant 40-kDa outer membrane protein of Klebsiella pneumoniae (P40) for specific CTL induction. We studied the CTL response induced in HLA-A*0201/K(b) transgenic mice immunized with peptides derived from two melanoma-associated differentiation Ags, the HLA-A*0201-restricted decapeptide Melan-A(26--35) substituted at position 2 and the K(b)-restricted tyrosinase-related protein 2(181--188) T cell epitope. We found that both peptides are able to generate a specific CTL response when mixed with the protein in the absence of conventional adjuvant. This CTL response is a function of the amount of P40 used for immunization. Moreover, the CTL response generated against the tyrosinase-related protein 2(181-188) peptide in presence of P40 is associated with tumor protection in two different experimental models and is independent of the presence of CD4(+) T lymphocytes. Thus, the recombinant bacterial protein P40 functions as a potent immunological adjuvant for specific CTL induction

    EphA2 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes

    No full text
    EphA2 (Eck) is a tyrosine kinase receptor that is overexpressed in several human cancers such as breast, colon, lung, prostate, gastric carcinoma, and metastatic melanoma but not in nonmalignant counterparts. To validate EphA2 as a tumor antigen recognized by CD8+ T lymphocytes, we used reverse immunology approach to identify HLA-A*0201-restricted epitopes. Peptides bearing the HLA-A*0201-specific anchor motifs were analyzed for their capacity to bind and stabilize the HLA-A*0201 molecules. Two peptides, EphA2(58) and EphA2(550), with a high affinity for HLA-A*0201 were selected. Both peptides were immunogenic in the HLA-A*0201-transgenic HHD mice. Interestingly, peptide-specific murine CTLs cell lines responded to COS-7 cells coexpressing HLA-A*0201 and EphA2 and to EphA2-positive human tumor cells of various origin (renal cell, lung, and colon carcinoma and sarcoma). This demonstrates that EphA2(58) and EphA2(550) are naturally processed from endogenous EphA2. In addition, EphA2(58) and EphA2(550) stimulated specific CD8(+) T cells from healthy donor peripheral blood mononuclear cells. These T cells recognized EphA2-positive human tumor cells in an HLA-A*0201-restricted manner. Interestingly, EphA2-specific CD8+ T cells were detected in the peripheral blood mononuclear cells of prostate cancer patients. These results show for the first time that EphA2 is a tumor rejection antigen and lead us to propose EphA2(58) and EphA2(550) peptides for a broad-spectrum-tumor immunotherapy
    corecore