91 research outputs found

    The latent potential of YouTube - Will it become the 21st Century lecturer's film archive?

    Full text link
    YouTube (http://www.youtube.com) is an online, public-access video-sharing site that allows users to post short streaming-video submissions for open viewing. Along with Google, MySpace, Facebook, etc. it is one of the great success stories of the Internet, and is widely used by many of today's undergraduate students. The higher education sector has recently realised the potential of YouTube for presenting teaching resources/material to students, and publicising research. This article considers another potential use for online video archiving websites such as YouTube and GoogleVideo in higher education - as an online video archive providing thousands of hours of video footage for use in lectures. In this article I will discuss why this might be useful, present some examples that demonstrate the potential for YouTube as a teaching resource, and highlight some of the copyright and legal issues that currently impact on the effective use of new online video websites, such as YouTube, for use as a teaching resource.Comment: To be published in October 2008 issue of CAL-laborate (http://science.uniserve.edu.au/pubs/callab/index.html

    What lurks below the last plateau: Experimental studies of the 0.7 x 2e^2/h conductance anomaly in one-dimensional systems

    Full text link
    The integer quantized conductance of one-dimensional electron systems is a well understood effect of quantum confinement. A number of fractionally quantized plateaus are also commonly observed. They are attributed to many-body effects, but their precise origin is still a matter of debate, having attracted considerable interest over the past 15 years. This review reports on experimental studies of fractionally quantized plateaus in semiconductor quantum point contacts and quantum wires, focusing on the 0.7 x 2e^2/h conductance anomaly, its analogs at higher conductances, and the zero bias peak observed in the d.c. source-drain bias for conductances less than 2e^2/h.Comment: Topical Review for J. Phys.: Condens. Matter, published version available at http://iopscience.iop.org/0953-8984/23/44/443201/ Document is 131 pages, 43 figure

    Near-thermal limit gating in heavily-doped III-V semiconductor nanowires using polymer electrolytes

    Full text link
    Doping is a common route to reducing nanowire transistor on-resistance but has limits. High doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of sub-threshold swing and contact resistance that surpasses the best existing p-type nanowire MOSFETs. Our sub-threshold swing of 75 mV/dec is within 25% of the room-temperature thermal limit and comparable with n-InP and n-GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.Comment: 6 pages, 2 figures, supplementary available at journa

    Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures

    Full text link
    We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at millikelvin temperatures in magnetic fields up to 10T. Our apparatus allows for continuous in situ rotation of a device through >100deg in two possible configurations. The first enables rotation of the field within the plane of the device, and the second allows the field to be rotated from in-plane to perpendicular to the device plane. An integrated angle sensor coupled with a closed-loop feedback system allows the device orientation to be known to within +/-0.03deg whilst maintaining the sample temperature below 100mK.Comment: 8 pages, 5 figure

    The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors

    Full text link
    We compare the characteristics of phase-pure MOCVD grown ZB and WZ InAs nanowire transistors in several atmospheres: air, dry pure N2_2 and O2_2, and N2_2 bubbled through liquid H2_2O and alcohols to identify whether phase-related structural/surface differences affect their response. Both WZ and ZB give poor gate characteristics in dry state. Adsorption of polar species reduces off-current by 2-3 orders of magnitude, increases on-off ratio and significantly reduces sub-threshold slope. The key difference is the greater sensitivity of WZ to low adsorbate level. We attribute this to facet structure and its influence on the separation between conduction electrons and surface adsorption sites. We highlight the important role adsorbed species play in nanowire device characterisation. WZ is commonly thought superior to ZB in InAs nanowire transistors. We show this is an artefact of the moderate humidity found in ambient laboratory conditions: WZ and ZB perform equally poorly in the dry gas limit yet equally well in the wet gas limit. We also highlight the vital role density-lowering disorder has in improving gate characteristics, be it stacking faults in mixed-phase WZ or surface adsorbates in pure-phase nanowires.Comment: Accepted for publication in Nanotechnolog

    Fractal Conductance Fluctuations of Classical Origin

    Full text link
    In mesoscopic systems conductance fluctuations are a sensitive probe of electron dynamics and chaotic phenomena. We show that the conductance of a purely classical chaotic system with either fully chaotic or mixed phase space generically exhibits fractal conductance fluctuations unrelated to quantum interference. This might explain the unexpected dependence of the fractal dimension of the conductance curves on the (quantum) phase breaking length observed in experiments on semiconductor quantum dots.Comment: 5 pages, 4 figures, to appear in PR

    Towards low-dimensional hole systems in Be-doped GaAs nanowires

    Full text link
    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately-doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly-doped nanowires and inability to reach a clear off-state under gating for the highly-doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ~10410^{4}, and sub-threshold slope 50 mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantization highlighting the potential for future quantum device studies in this material system
    • …
    corecore