Doping is a common route to reducing nanowire transistor on-resistance but
has limits. High doping level gives significant loss in gate performance and
ultimately complete gate failure. We show that electrolyte gating remains
effective even when the Be doping in our GaAs nanowires is so high that
traditional metal-oxide gates fail. In this regime we obtain a combination of
sub-threshold swing and contact resistance that surpasses the best existing
p-type nanowire MOSFETs. Our sub-threshold swing of 75 mV/dec is within 25% of
the room-temperature thermal limit and comparable with n-InP and n-GaAs
nanowire MOSFETs. Our results open a new path to extending the performance and
application of nanowire transistors, and motivate further work on improved
solid electrolytes for nanoscale device applications.Comment: 6 pages, 2 figures, supplementary available at journa