22 research outputs found

    METHODS FOR CLUSTERING TIME SERIES DATA ACQUIRED FROM MOBILE HEALTH APPS

    No full text
    In our recent Asthma Mobile Health Study (AMHS), thousands of asthma patients across the country contributed medical data through the iPhone Asthma Health App on a daily basis for an extended period of time. The collected data included daily self-reported asthma symptoms, symptom triggers, and real time geographic location information. The AMHS is just one of many studies occurring in the context of now many thousands of mobile health apps aimed at improving wellness and better managing chronic disease conditions, leveraging the passive and active collection of data from mobile, handheld smart devices. The ability to identify patient groups or patterns of symptoms that might predict adverse outcomes such as asthma exacerbations or hospitalizations from these types of large, prospectively collected data sets, would be of significant general interest. However, conventional clustering methods cannot be applied to these types of longitudinally collected data, especially survey data actively collected from app users, given heterogeneous patterns of missing values due to: 1) varying survey response rates among different users, 2) varying survey response rates over time of each user, and 3) non-overlapping periods of enrollment among different users. To handle such complicated missing data structure, we proposed a probability imputation model to infer missing data. We also employed a consensus clustering strategy in tandem with the multiple imputation procedure. Through simulation studies under a range of scenarios reflecting real data conditions, we identified favorable performance of the proposed method over other strategies that impute the missing value through low-rank matrix completion. When applying the proposed new method to study asthma triggers and symptoms collected as part of the AMHS, we identified several patient groups with distinct phenotype patterns. Further validation of the methods described in this paper might be used to identify clinically important patterns in large data sets with complicated missing data structure, improving the ability to use such data sets to identify at-risk populations for potential intervention

    Development of the ehive Digital Health App: Protocol for a Centralized Research Platform

    No full text
    BackgroundThe increasing use of smartphones, wearables, and connected devices has enabled the increasing application of digital technologies for research. Remote digital study platforms comprise a patient-interfacing digital application that enables multimodal data collection from a mobile app and connected sources. They offer an opportunity to recruit at scale, acquire data longitudinally at a high frequency, and engage study participants at any time of the day in any place. Few published descriptions of centralized digital research platforms provide a framework for their development. ObjectiveThis study aims to serve as a road map for those seeking to develop a centralized digital research platform. We describe the technical and functional aspects of the ehive app, the centralized digital research platform of the Hasso Plattner Institute for Digital Health at Mount Sinai Hospital, New York, New York. We then provide information about ongoing studies hosted on ehive, including usership statistics and data infrastructure. Finally, we discuss our experience with ehive in the broader context of the current landscape of digital health research platforms. MethodsThe ehive app is a multifaceted and patient-facing central digital research platform that permits the collection of e-consent for digital health studies. An overview of its development, its e-consent process, and the tools it uses for participant recruitment and retention are provided. Data integration with the platform and the infrastructure supporting its operations are discussed; furthermore, a description of its participant- and researcher-facing dashboard interfaces and the e-consent architecture is provided. ResultsThe ehive platform was launched in 2020 and has successfully hosted 8 studies, namely 6 observational studies and 2 clinical trials. Approximately 1484 participants downloaded the app across 36 states in the United States. The use of recruitment methods such as bulk messaging through the EPIC electronic health records and standard email portals enables broad recruitment. Light-touch engagement methods, used in an automated fashion through the platform, maintain high degrees of engagement and retention. The ehive platform demonstrates the successful deployment of a central digital research platform that can be modified across study designs. ConclusionsCentralized digital research platforms such as ehive provide a novel tool that allows investigators to expand their research beyond their institution, engage in large-scale longitudinal studies, and combine multimodal data streams. The ehive platform serves as a model for groups seeking to develop similar digital health research programs. International Registered Report Identifier (IRRID)DERR1-10.2196/4920
    corecore