22 research outputs found

    Rapid Accumulation of CD14+CD11c+ Dendritic Cells in Gut Mucosa of Celiac Disease after in vivo Gluten Challenge

    Get PDF
    Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c(+) dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c(+) or CD103(+)) and CD163(+)CD11c(-) macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge.Treated HLA-DQ2(+) CD patients (n = 12) and HLA-DQ2(+) gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry.In treated CD patients, the gluten challenge increased the density of CD14(+)CD11c(+) DCs, whereas the density of CD103(+)CD11c(+) DCs and CD163(+)CD11c(-) macrophages decreased, and the density of CD1c(+)CD11c(+) DCs remained unchanged. Most CD14(+)CD11c(+) DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3(+) intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed.Rapid accumulation of CD14(+)CD11c(+) DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c(+) DCs indicates that these cells are newly recruited monocytes

    Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans.

    No full text
    AIMS/HYPOTHESIS: Previous studies have shown relationships between fatty acid ratios in adipose tissue triacylglycerol (TG), adipocyte size and measures of insulin sensitivity. We hypothesised that variations in adipose tissue de novo lipogenesis (DNL) in relation to adiposity might explain some of these observations. METHODS: In a cross-sectional study, subcutaneous abdominal adipose tissue biopsies from 59 people were examined in relation to fasting and post-glucose insulin sensitivity. Adipocyte size, TG fatty acid composition and mRNA expression of lipogenic genes were determined. RESULTS: We found strong positive relationships between adipose tissue TG content of the fatty acids myristic acid (14:0) and stearic acid (18:0) with insulin sensitivity (HOMA model) (p < 0.01 for each), and inverse relationships with adipocyte size (p < 0.01, p < 0.05, respectively). Variation in 18:0 content was the determinant of the adipose tissue TG 18:1 n-9/18:0 ratio, which correlated negatively with insulin sensitivity (p < 0.01), as observed previously. Adipose tissue 18:0 content correlated positively with the mRNA expression of lipogenic genes (e.g. FASN, p < 0.01). Lipogenic gene expression (a composite measure derived from principal components analysis) was inversely correlated with adipocyte cell size (p < 0.001). There was no relationship between dietary saturated fatty acid intake and adipose tissue 18:0 content. CONCLUSIONS/INTERPRETATION: Our data suggest a physiological mechanism whereby DNL is downregulated as adipocytes expand. Taken together with other data, they also suggest that hepatic and adipose tissue DNL are not regulated in parallel. We also confirm a strong relationship between small adipocytes and insulin sensitivity, which is independent of BMI

    A novel internal antigen which distinguishes germinal centre cells from other B-cell types.

    No full text
    A new monoclonal antibody, 4KB51, is described which labels the majority of B cells in blood and in mantle and marginal zones but not germinal centre lymphocytes or plasma cells. Antibody 4KB51 also stains monocytes, neutrophils and the majority of T cells. It recognizes an intracellular antigen of 160,000 MW (unreduced) and 68,000 MW (reduced). Antibody 4KB51 labels the tumour cells in all cases of hairy cell leukaemia and in four of the 16 cases of centrocytic B-cell lymphoma studied. No labelling of the other lymphomas (114 cases) or lymphoid leukaemias (13 cases) tested was seen. Antibody 4KB51 may be of value in defining B-cell subsets and in the differential diagnosis of hairy cell leukaemia and centrocytic lymphomas. The pattern of reactivity of 4KB51 suggests that its target antigen may play a functional role, possibly involved in lymphocyte homing
    corecore