46 research outputs found

    Risk adjustment for inter-hospital comparison of primary cesarean section rates: need, validity and parsimony

    Get PDF
    BACKGROUND: Cesarean section rates is often used as an indicator of quality of care in maternity hospitals. The assumption is that lower rates reflect in developed countries more appropriate clinical practice and general better performances. Hospitals are thus often ranked on the basis of caesarean section rates. The aim of this study is to assess whether the adjustment for clinical and sociodemographic variables of the mother and the fetus is necessary for inter-hospital comparisons of cesarean section (c-section) rates and to assess whether a risk adjustment model based on a limited number of variables could be identified and used. METHODS: Discharge abstracts of labouring women without prior cesarean were linked with abstracts of newborns discharged from 29 hospitals of the Emilia-Romagna Region (Italy) from 2003 to 2004. Adjusted ORs of cesarean by hospital were estimated by using two logistic regression models: 1) a full model including the potential confounders selected by a backward procedure; 2) a parsimonious model including only actual confounders identified by the "change-in-estimate" procedure. Hospital rankings, based on ORs were examined. RESULTS: 24 risk factors for c-section were included in the full model and 7 (marital status, maternal age, infant weight, fetopelvic disproportion, eclampsia or pre-eclampsia, placenta previa/abruptio placentae, malposition/malpresentation) in the parsimonious model. Hospital ranking using the adjusted ORs from both models was different from that obtained using the crude ORs. The correlation between the rankings of the two models was 0.92. The crude ORs were smaller than ORs adjusted by both models, with the parsimonious ones producing more precise estimates. CONCLUSION: Risk adjustment is necessary to compare hospital c-section rates, it shows differences in rankings and highlights inappropriateness of some hospitals. By adjusting for only actual confounders valid and more precise estimates could be obtained

    Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

    Get PDF
    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk

    An Experimental and Computational Study of Effects of Microtubule Stabilization on T-Cell Polarity

    Get PDF
    T-killer cells eliminate infected and cancerous cells with precision by positioning their centrosome near the interface (immunological synapse) with the target cell. The mechanism of centrosome positioning has remained controversial, in particular the role of microtubule dynamics in it. We re-examined the issue in the experimental model of Jurkat cells presented with a T cell receptor-binding artificial substrate, which permits controlled stimulation and reproducible measurements. Neither 1-µM taxol nor 100-nM nocodazole inhibited the centrosome positioning at the “synapse” with the biomimetic substrate. At the same time, in micromolar taxol but not in nanomolar nocodazole the centrosome adopted a distinct peripheral rather than the normally central position within the synapse. This effect was reproduced in a computational energy-minimization model that assumed no microtubule dynamics, but only a taxol-induced increase in the length of the microtubules. Together, the experimental and computational results indicate that microtubule dynamics are not essential for the centrosome positioning, but that the fit of the microtubule array in the deformed body of the conjugated T cell is a major factor. The possibility of modulating the T-cell centrosome position with well-studied drugs and of predicting their effects in silico appears attractive for designing anti-cancer and antiviral therapies

    Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects?

    Get PDF
    Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    Hyperammonemia and systemic inflammatory response syndrome predicts presence of hepatic encephalopathy in dogs with congenital portosystemic shunts

    Get PDF
    Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with liver disease. The pathogenesis of he is incompletely understood although ammonia and inflammatory cytokines have been implicated as key mediators. To facilitate further mechanistic understanding of the pathogenesis of HE, a large number of animal models have been developed which often involve the surgical creation of an anastomosis between the hepatic portal vein and the caudal vena cava. One of the most common congenital abnormalities in dogs is a congenital portosystemic shunt (cpss), which closely mimics these surgical experimental models of HE. Dogs with a cPSS often have clinical signs which mimic clinical signs observed in humans with HE. Our hypothesis is that the pathogenesis of HE in dogs with a cPSS is similar to humans with HE. The aim of the study was to measure a range of clinical, haematological and biochemical parameters, which have been linked to the development of HE in humans, in dogs with a cPSS and a known HE grade. One hundred and twenty dogs with a cPSS were included in the study and multiple regression analysis of clinical, haematological and biochemical variables revealed that plasma ammonia concentrations and systemic inflammatory response syndrome scores predicted the presence of HE. Our findings further support the notion that the pathogenesis of canine and human HE share many similarities and indicate that dogs with cPSS may be an informative spontaneous model of human HE. Further investigations on dogs with cPSS may allow studies on HE to be undertaken without creating surgical models of HE thereby allowing the number of large animals used in animal experimentation to be reduced

    A History of Clinical Transplantation

    Get PDF
    corecore