22 research outputs found

    Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae

    Get PDF
    Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection

    Transplant results in adults with Fanconi anaemia

    Get PDF

    Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae

    Get PDF
    Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection

    miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells

    No full text
    Studies have demonstrated that angiotensin II (Ang II) can regulate intestinal fluid and electrolyte transport and control intestinal wall muscular activity. Ang II is also a proinflammatory mediator that participates in inflammatory responses such as apoptosis, angiogenesis, and vascular remodeling; accumulating evidence suggests that this hormone may be involved in gastrointestinal (GI) inflammation and carcinogenesis. Ang II binds to two distinct G protein-coupled receptor subtypes, the AT1R and AT2R, which are widely expressed in the GI system. Together these studies suggest that Ang II-AT1R/-AT2R actions may play an important role in GI tract physiology and pathophysiology. Currently it is not known whether miRNAs can regulate the expression of the human AT1R (hAT1R) in the GI system. PCR and in situ hybridization experiments demonstrated that miR-802 was abundantly expressed in human colon and intestine. Luciferase reporter assays demonstrated that miR-802 could directly interact with the bioinformatics-predicted target site harbored within the 3′-untranslated region of the hAT1R mRNA. To validate that the levels of miR-802 were physiologically relevant in the GI system, we demonstrated that miR-802 “loss-of-function” experiments resulted in augmented hAT1R levels and enhanced Ang II-induced signaling in a human intestinal epithelial cell line. These results suggest that miR-802 can modulate the expression of the hAT1R in the GI tract and ultimately play a role in regulating the biological efficacy of Ang II in this system
    corecore