45 research outputs found

    DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    Get PDF
    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy) for an inhibited waste to a range of 5 to 23.4 mpy, depending on sludge chemistry. F-area-based effluents were, in general, more corrosive. Effective corrosion control measures included evaporation, hydroxide additions and mixing with supernates containing a representative supernate chemistry (5 M hydroxide and 1.5 M nitrite). Corrosion rates with these measures were generally 0.2 mpy. The A537 carbon steel was found to be susceptible to pitting when the corrosion control measure involved mixing the ECC effluent with a supernate chemistry having minimal inhibitor concentrations (0.5 M hydroxide and 0.3 M nitrite). Corrosion rates in this case were near 1 mpy

    Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Get PDF
    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction. For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 C. For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 C). For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available. For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive species and to verify the performance of materials in the key process vessels as well as downstream vessels and processes such as the evaporator where heating is occurring. The following testing would provide data for establishing the viability of these components. Electrochemical testing - evaluate the corrosion rate and susceptibility to localized corrosion within the SRAT, SME, OGCT, Quencher and Evaporator. Testing would be conducted at operational temperatures in simulants with ranges of glycolic acid, iron, chloride, sulfate, mercury, and antifoaming agents. Hot-wall testing – evaluate the corrosion under heat transfer conditions to simulate those for heating coils and evaporator coil surfaces. Testing would be at nominal chemistries with concentration of glycolic acid, chloride, sulfate and mercury at high expected concentrations. Some tests would be performed with antifoaming agents. Melter coupon testing – evaluate the performance of alloy 690 in melter feeds containing glycolic acid. This testing would be conducted as part of the melter flammability testing. Polymer testing – evaluate changes in polymer properties in immersion testing with DWPF simulants to provide product-specific data for service life evaluation and analyze the Hansen solubility parameters for relevant polymers in glycolic vs. formic acid. During this literature review process, the difficulties associated with measuring the liquid level in formic acid tanks were revealed. A test is recommended to resolve this issue prior to the introduction of glycolic acid into the DWPF. This testing would evaluate the feasibility of using ultrasonic inspection techniques to determine liquid level and other desirable attributes of glycolic acid in DWPF storage tanks and related equipment

    RELATIVE HUMIDITY TESTS IN SUPPORT OF THE 3013 STORAGE AND SURVEILLANCE PROGRAM

    Get PDF
    Techniques to control the initial relative humidity over oxide/salt mixtures have been developed using cerium oxide as a surrogate for plutonium oxide. Such control is required to validate certain assumptions in the Department of Energy Standard DOE-STD-3013, and to provide essential information to support field surveillance at the storage sites for excess plutonium oxides. Concern over the validity of the assumption that corrosion induced degradation in 3013 containers could be controlled by assuring that the moisture content of any stored oxide/salt mixture was below 0.5 w t% arose when stress corrosion cracks were found in test samples exposed at room temperature to plutonium oxide/salt mixtures having a moisture content only marginally above 0.5 wt %. Additionally, analysis of the stress corrosion cracking observations suggests that the initial relative humidity over the oxide/salt mixture may play a major role in the cracking process. The investigations summarized in this report provide the procedures necessary to control the initial relative humidity to selected values within the range of 16 to 50% by controlling the loading relative humidity (18 to 60%) and the oxide/salt mixture water content (0.05 to 0.45 wt %). The studies also demonstrated that the initial relative humidity may be estimated by calculations using software EQ3/6. Cerium oxide/salt mixtures were used in this study because qualification tests with non-radioactive materials will reduce costs while increasing the breadth of the test programs required to support field surveillances of stored 3013 containers

    EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Get PDF
    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance

    Furniture Rack Corrosion Coupon Surveillance - 2012 Update

    Get PDF
    Under the L Basin corrosion surveillance program furniture rack coupons immersed for 14 years (FY2009 coupons) and 16 years (FY2011 coupons) were analyzed and the results trended with coupons exposed for shorter times. In addition, a section harvested from an actual furniture rack that was immersed for 14 years was analyzed for pitting in the weld and heat-affected-zone (HAZ) regions. The L Basin operations maintained very good water quality over the entire immersion period for these samples. These results for FY2009 and FY2011 coupons showed that the average pit depths for the 6061 and 6063 base metal are 1 and 2 mils, respectively, while those for the weld and HAZ are 3 and 4 mils, respectively. The results for the weld and HAZ regions are similar to coupons removed during the period of FY2003 to FY2007. These similarities indicate that the pit development occurred quickly followed by slow kinetics of increase in pit depth. For the actual furniture rack sample average pits of 5 and 2 mils were measured for the HAZ and weld, respectively. These results demonstrate that pitting corrosion of the aluminum furniture racks used to support the spent fuel occurs in waters of good quality. The corrosion kinetics or pit depth growth rate is much less that 1 mil/year, and would not impact long-term use of this material system for fuel storage racks in L Basin if good water quality is maintained

    Failure prevention by short-time corrosion tests

    Full text link
    corecore