6 research outputs found

    A design methodology for additive manufacturing applied to fused deposition modeling process

    Get PDF
    The aim of this article is to propose a design methodology for the production of parts in additive manufacturing (AM). The AM process allows new features (e.g., multi-material, fixed assemblies, complex shapes), and this paradigm shift requires the accompaniment of designers to take account of these characteristics. In response to this problematic, we propose a design methodology, in three stages, which respects the integrity of the digital channel and whose purpose is to provide a digital mock-up sliced ready to be manufactured on the most common AM process (Fused Deposition Modeling). From the specifications and the process knowledge, our methodology provides the designer a first solid geometry which satisfies all the constraints. Then, a topology optimization limits the useful volume of material of the part in order to limit the weight and the manufacturing time. If necessary, an optimized support providing manufacturability of the part is generated according to the same criteria. The methodology we propose is applied to a real industrial part

    A design methodology for additive manufacturing applied to fused deposition modeling process

    No full text
    The aim of this article is to propose a design methodology for the production of parts in additive manufacturing (AM). The AM process allows new features (e.g., multi-material, fixed assemblies, complex shapes), and this paradigm shift requires the accompaniment of designers to take account of these characteristics. In response to this problematic, we propose a design methodology, in three stages, which respects the integrity of the digital channel and whose purpose is to provide a digital mock-up sliced ready to be manufactured on the most common AM process (Fused Deposition Modeling). From the specifications and the process knowledge, our methodology provides the designer a first solid geometry which satisfies all the constraints. Then, a topology optimization limits the useful volume of material of the part in order to limit the weight and the manufacturing time. If necessary, an optimized support providing manufacturability of the part is generated according to the same criteria. The methodology we propose is applied to a real industrial part
    corecore