45 research outputs found

    In Vivo Detection of Amyloid-β Deposits Using Heavy Chain Antibody Fragments in a Transgenic Mouse Model for Alzheimer's Disease

    Get PDF
    This study investigated the in vivo properties of two heavy chain antibody fragments (VHH), ni3A and pa2H, to differentially detect vascular or parenchymal amyloid-β deposits characteristic for Alzheimer's disease and cerebral amyloid angiopathy. Blood clearance and biodistribution including brain uptake were assessed by bolus injection of radiolabeled VHH in APP/PS1 mice or wildtype littermates. In addition, in vivo specificity for Aβ was examined in more detail with fluorescently labeled VHH by circumventing the blood-brain barrier via direct application or intracarotid co-injection with mannitol. All VHH showed rapid renal clearance (10–20 min). Twenty-four hours post-injection 99mTc-pa2H resulted in a small yet significant higher cerebral uptake in the APP/PS1 animals. No difference in brain uptake were observed for 99mTc-ni3A or DTPA(111In)-pa2H, which lacked additional peptide tags to investigate further clinical applicability. In vivo specificity for Aβ was confirmed for both fluorescently labeled VHH, where pa2H remained readily detectable for 24 hours or more after injection. Furthermore, both VHH showed affinity for parenchymal and vascular deposits, this in contrast to human tissue, where ni3A specifically targeted only vascular Aβ. Despite a brain uptake that is as yet too low for in vivo imaging, this study provides evidence that VHH detect Aβ deposits in vivo, with high selectivity and favorable in vivo characteristics, making them promising tools for further development as diagnostic agents for the distinctive detection of different Aβ deposits

    Future Diagnostic Agents

    No full text
    Timely and specific diagnosis of infectious diseases can be clinically challenging but essential for the patient's outcome. Laboratory tests, such as a blood culture or urine specimen, can detect the responsible micro-organism but cannot discriminate between sterile inflammatory disease and truly infectious disease. Imaging tests, like scintigraphic techniques, can pinpoint the infection in the body. There are a number of clinical scintigraphic tests from which to choose, and no single test is optimal for the various presentations of clinical infectious disease. The currently available radiopharmaceuticals often are not capable of distinguishing between sterile inflammation, and bacterial or fungal infections. Neutrophil-mediated processes, characteristic for both inflammatory and infectious processes, can be targeted in situ by radiolabeled leukocytes, antibodies or fragments, or even by cytokines and 18F-fluorodeoxyglucose. Unfortunately those techniques are not infection-specific markers, and ongoing research is in progress to tackle this problem. The most promising option in this respect is directly targeting bacteria or fungi with radiolabeled antibiotics or antimicrobial peptides. These theoretically highly infection-specific radiopharmaceuticals could be used for monitoring the success of antimicrobial therapy of infectious disease. Although results from preclinical experiments and pilot studies in patients are promising, radiolabeled anti-infective agents are not currently in routine clinical use and studies are continuing to prove their effectiveness for diagnostic imaging of infections in the future. © 2009 Elsevier Inc. All rights reserved.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    In vivo Biodistribution of Stem Cells Using Molecular Nuclear Medicine Imaging

    No full text
    Studies on stem cell are rapidly developing since these cells have great therapeutic potential for numerous diseases and has generated much promise as well as confusion due to contradictory results. Major questions in this research field have been raised as to how and in which numbers stem cells home to target tissues after administration, whether the cells engraft and differentiate, and what their long-term fate is. To answer these questions, reliable in vivo tracking techniques are essential. In vivo molecular imaging techniques using magnetic resonance imaging, bioluminescence, and scintigraphy have been applied for this purpose in experimental studies. The aim of this review is to discuss various radiolabeling techniques for early stem cell tracking, the need for validation of viability and performance of the cells after labeling, and the routes of administration in experimental animal models. In addition, we evaluate current problems and directions related to stem cell tracking using radiolabels, including a possible role for their clinical implementation. © 2010 Wiley-Liss, Inc

    In vivo Biodistribution of Stem Cells Using Molecular Nuclear Medicine Imaging

    No full text
    Studies on stem cell are rapidly developing since these cells have great therapeutic potential for numerous diseases and has generated much promise as well as confusion due to contradictory results. Major questions in this research field have been raised as to how and in which numbers stem cells home to target tissues after administration, whether the cells engraft and differentiate, and what their long-term fate is. To answer these questions, reliable in vivo tracking techniques are essential. In vivo molecular imaging techniques using magnetic resonance imaging, bioluminescence, and scintigraphy have been applied for this purpose in experimental studies. The aim of this review is to discuss various radiolabeling techniques for early stem cell tracking, the need for validation of viability and performance of the cells after labeling, and the routes of administration in experimental animal models. In addition, we evaluate current problems and directions related to stem cell tracking using radiolabels, including a possible role for their clinical implementation. J. Cell. Physiol. 226: 1444-1452, 2011. (C) 2010 Wiley-Liss, Inc

    An update on radiotracer development for molecular imaging of bacterial infections

    No full text
    Background: Bacterial infections are still a major global healthcare problem. To combat the increasing antimicrobial resistance, early diagnosis of bacterial infections—including the identification of bacterial species—is needed to improve antibiotic stewardship and to help reduce the use of broad-spectrum antibiotics. To aid successful targeted antibiotic treatment, specific detection and localisation of infectious organisms is warranted. Nuclear medicine imaging approaches have been successfully used to diagnose bacterial infections and to differentiate between pathogen induced infections and sterile inflammatory processes. Aim: In this comprehensive review we present an overview of recent developments in radiolabelled bacterial imaging tracers. Methods: The PubMed/MEDLINE and Embase (OvidSP) literature databases were systematically searched for publications on SPECT and PET on specific imaging of bacterial using specific guidelines with MeSH-terms, truncations, and completion using cross-references. Tracers in literature that was extensively reviewed before 2016 were not included in this update. Where possible, the chemical structure of the radiolabelled compounds and clinical images were shown. Results: In 219 original articles pre-clinical and clinical imaging of bacterial infection with new tracers were included. In our view, the highest translational potential lies with tracers that are specific to target the pathogens: e.g., 99m Tc- and 68 Ga-labelled UBI 29–41 , 99m Tc-vancomycin, m-[ 18 F]-fluoro-PABA, [methyl- 11 C]-D-methionine, [ 18 F]-FDS, [ 18 F]-maltohexaose and [ 18 F]-maltotriose. An encouraging note is that some of these tracers have already been successfully evaluated in clinical settings. Conclusion: This review summarises updates in tracer development for specific (pre-clinical and clinical) imaging of bacterial infections. We propsed some promising tracers that are likely to become innovative standards in the clinical setting in the near feature. </p
    corecore