7 research outputs found

    A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19

    Get PDF
    IntroductionThe current COVID-19 pandemic caused by the SARS-CoV-2 virus has impacted the delivery of dental care globally and has led to re-evaluation of infection control standards. However, lack of clarity around what is known and unknown regarding droplet and aerosol generation in dentistry (including oral surgery and extractions), and their relative risk to patients and the dental team, necessitates a review of evidence relating to specific dental procedures. This review is part of a wider body of research exploring the evidence on bioaerosols in dentistry and involves detailed consideration of the risk of contamination in relation to oral surgery.MethodsA comprehensive search of Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science, LILACS and ClinicalTrials.Gov was conducted using key terms and MeSH (Medical Subject Headings) words relating to the review questions. Methodological quality including sensitivity was assessed using a schema developed to measure quality aspects of studies using a traffic light system to allow inter- and intra-study overview and comparison. A narrative synthesis was conducted for assessment of the included studies and for the synthesis of results.ResultsEleven studies on oral surgery (including extractions) were included in the review. They explored microbiological (bacterial and fungal) and blood (visible and/or imperceptible) contamination at the person level (patients, operators and assistants) and/or at a wider environmental level, using settle plates, chemiluminescence reagents or air samplers; all within 1 m of the surgical site. Studies were of generally low to medium quality and highlighted an overall risk of contaminated aerosol, droplet and splatter generation during oral surgery procedures, most notably during removal of impacted teeth using rotatory handpieces. Risk of contamination and spread was increased by factors, including proximity to the operatory site, longer duration of treatment, higher procedural complexity, non-use of an extraoral evacuator and areas involving more frequent contact during treatment.ConclusionA risk of contamination (microbiological, visible and imperceptible blood) to patients, dental team members and the clinical environment is present during oral surgery procedures, including routine extractions. However, the extent of contamination has not been explored fully in relation to time and distance. Variability across studies with regards to the analysis methods used and outcome measures makes it difficult to draw robust conclusions. Further studies with improved methodologies, including higher test sensitivity and consideration of viruses, are required to validate these findings

    A pilot study of bioaerosol reduction using an air cleaning system during dental procedures

    No full text
    Background Bioaerosols are defined as airborne particles of liquid or volatile compounds that contain living organisms or have been released from living organisms. The creation of bioaerosols is a recognized consequence of certain types of dental treatment and represents a potential mechanism for the spread of infection. Objectives The aims of the present study were to assess the bioaerosols generated by certain dental procedures and to evaluate the efficiency of a commercially available Air Cleaning System (ACS) designed to reduce bioaerosol levels. Methods Bioaerosol sampling was undertaken in the absence of clinical activity (baseline) and also during treatment procedures (cavity preparation using an air rotor, history and oral examination, ultrasonic scaling and tooth extraction under local anaesthesia). For each treatment, bioaerosols were measured for two patient episodes (with and without ACS operation) and between five and nine bioaerosol samples were collected. For baseline measurements, 15 bioaerosol samples were obtained. For bioaerosol sampling, environmental air was drawn on to blood agar plates using a bioaerosol sampling pump placed in a standard position 20 cm from the dental chair. Plates were incubated aerobically at 37 degrees C for 48 hours and resulting growth quantified as colony forming units (cfu/m(3)). Distinct colony types were identified using standard methods. Results were analysed statistically using SPSS 12 and Wilcoxon signed rank tests. Results The ACS resulted in a significant reduction (p = 0.001) in the mean bioaerosols (cfu/m(3)) of all three clinics compared with baseline measurements. The mean level of bioaerosols recorded during the procedures, with or without the ACS activated respectively, was 23.9 cfu/m(3) and 105.1 cfu/m(3) (p = 0.02) for cavity preparation, 23.9 cfu/m(3) and 62.2 cfu/m(3) (p = 0.04) for history and oral examination; 41.9 cfu/m(3) and 70.9 cfu/m(3) (p = 0.01) for ultrasonic scaling and 9.1 cfu/m(3) and 66.1 cfu/m(3) (p = 0.01) for extraction. The predominant microorganisms isolated were Staphylococcus species and Micrococcus species. Conclusion These findings indicate potentially hazardous bioaerosols created during dental procedures can be significantly reduced using an air cleaning system

    Effects of Clinical Pathways: Do They Work?

    No full text
    corecore