19 research outputs found

    Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation

    Get PDF
    BACKGROUND: Extracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca(2+)](i )signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways. METHODS: Isometric contraction was measured on rat trachea, EPB and IPB isolated rings and human IPB isolated rings. [Ca(2+)](i )was monitored fluorimetrically using indo 1 in freshly isolated and cultured tracheal myocytes. Statistical comparisons were done with ANOVA or Student's t tests for quantitative variables and χ(2 )tests for qualitative variables. Results were considered significant at P < 0.05. RESULTS: In rat airways, extracellular ATP (10(-6)–10(-3 )M) induced an epithelium-independent and concentration-dependent contraction, which amplitude increased from trachea to IPB. The response was transient and returned to baseline within minutes. Similar responses were obtained with the non-hydrolysable ATP analogous ATP-γ-S. Successive stimulations at 15 min-intervals decreased the contractile response. In human IPB, the contraction was similar to that of rat IPB but the time needed for the return to baseline was longer. In isolated myocytes, ATP induced a concentration-dependent [Ca(2+)](i )response. The contractile response was not reduced by thapsigargin and RB2, a P2Y receptor inhibitor, except in rat and human IPB. By contrast, removal of external Ca(2+), external Na(+ )and treatment with D600 decreased the ATP-induced response. The contraction induced by α-β-methylene ATP, a P2X agonist, was similar to that induced by ATP, except in IPB where it was lower. Indomethacin and H-89, a PKA inhibitor, delayed the return to baseline in extrapulmonary airways. CONCLUSION: Extracellular ATP induces a transient contractile response in human and rat airways, mainly due to P2X receptors and extracellular Ca(2+ )influx in addition with, in IPB, P2Y receptors stimulation and Ca(2+ )release from intracellular Ca(2+ )stores. Extracellular Ca(2+ )influx occurs through L-type voltage-dependent channels activated by external Na(+ )entrance through P2X receptors. The transience of the response cannot be attributed to ATP degradation but to purinoceptor desensitization and, in extrapulmonary airways, prostaglandin-dependent PKA activation

    The effects of interleukin-8 on airway smooth muscle contraction in cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many cystic fibrosis (CF) patients display airway hyperresponsiveness and have symptoms of asthma such as cough, wheezing and reversible airway obstruction. Chronic airway bacterial colonization, associated with neutrophilic inflammation and high levels of interleukin-8 (IL-8) is also a common occurrence in these patients. The aim of this work was to determine the responsiveness of airway smooth muscle to IL-8 in CF patients compared to non-CF individuals.</p> <p>Methods</p> <p>Experiments were conducted on cultured ASM cells harvested from subjects with and without CF (control subjects). Cells from the 2<sup>nd </sup>to 5<sup>th </sup>passage were studied. Expression of the IL-8 receptors CXCR1 and CXCR2 was assessed by flow cytometry. The cell response to IL-8 was determined by measuring intracellular calcium concentration ([Ca<sup>2+</sup>]<sub>i</sub>), cell contraction, migration and proliferation.</p> <p>Results</p> <p>The IL-8 receptors CXCR1 and CXCR2 were expressed in both non-CF and CF ASM cells to a comparable extent. IL-8 (100 nM) induced a peak Ca<sup>2+ </sup>release that was higher in control than in CF cells: 228 ± 7 versus 198 ± 10 nM (p < 0.05). IL-8 induced contraction was greater in CF cells compared to control. Furthermore, IL-8 exposure resulted in greater phosphorylation of myosin light chain (MLC<sub>20</sub>) in CF than in control cells. In addition, MLC<sub>20 </sub>expression was also increased in CF cells. Exposure to IL-8 induced migration and proliferation of both groups of ASM cells but was not different between CF and non-CF cells.</p> <p>Conclusion</p> <p>ASM cells of CF patients are more contractile to IL-8 than non-CF ASM cells. This enhanced contractility may be due to an increase in the amount of contractile protein MLC<sub>20</sub>. Higher expression of MLC<sub>20 </sub>by CF cells could contribute to airway hyperresponsiveness to IL-8 in CF patients.</p

    The dopamine D1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium

    Get PDF
    Background Dopamine receptors comprise two subgroups, Gs protein-coupled “D1-like” receptors (D1, D5) and Gi-coupled “D2-like” receptors (D2, D3, D4). In airways, both dopamine D1 and D2 receptors are expressed on airway smooth muscle and regulate airway smooth muscle force. However, functional expression of the dopamine D1 receptor has never been identified on airway epithelium. Activation of Gs-coupled receptors stimulate adenylyl cyclase leading to cyclic AMP (cAMP) production, which is known to induce mucus overproduction through the cAMP response element binding protein (CREB) in airway epithelial cells. We questioned whether the dopamine D1 receptor is expressed on airway epithelium, and whether it promotes CREB phosphorylation and MUC5AC expression. Methods We evaluated the protein expression of the dopamine D1 receptor on native human airway epithelium and three sources of cultured human airway epithelial cells including primary cultured airway epithelial cells, the bronchial epithelial cell line (16HBE14o-), and the pulmonary mucoepidermoid carcinoma cell line (NCI-H292) using immunohistochemistry and immunoblotting. To characterize the stimulation of cAMP through the dopamine D1 receptor, 16HBE14o- cells and NCI-H292 cells were treated with dopamine or the dopamine D1 receptor agonists (SKF38393 or A68930) before cAMP measurements. The phosphorylation of CREB by A68930 in both 16HBE14o- and NCI-H292 cells was measured by immunoblot. The effect of dopamine or A68930 on the expression of MUC5AC mRNA and protein in NCI-H292 cells was evaluated by real-time PCR and immunofluorescence staining, respectively. Results The dopamine D1 receptor protein was detected in native human airway epithelium and three sources of cultured human airway epithelial cells. Dopamine or the dopamine D1-like receptor agonists stimulated cAMP production in 16HBE14o- cells and NCI-H292 cells, which was reversed by the selective dopamine D1-like receptor antagonists (SCH23390 or SCH39166). A68930 significantly increased phosphorylation of CREB in both 16HBE14o- and NCI-H292 cells, which was attenuated by the inhibitors of PKA (H89) and MEK (U0126). Expression of MUC5AC mRNA and protein were also increased by either dopamine or A68930 in NCI-H292 cells. Conclusions These results suggest that the activation of the dopamine D1 receptor on human airway epithelium could induce mucus overproduction, which could worsen airway obstructive symptoms

    Effects of extracellular triphosphate nucleotides and nucleosides on airway smooth muscle cell proliferation.

    No full text
    Extracellular ATP and uridine triphosphate (UTP) have a range of effects on a wide variety of cells through the activation of P(2) receptors. The aim of this work was to establish if stimulation with ATP and UTP enhances airway smooth muscle (ASM) cell proliferation and to determine the type of receptor mediating this effect. Proliferation of rat ASM cells was assessed through bromodeoxyuridine (BrdU) uptake and by cell counting. At concentrations of 10(-6) and 10(-5) M, ATP and UTP induced significant increases in BrdU incorporation. ATP analogs specific for the P(2X) and P(2Y1) receptor subtypes had no effect. UDP (a P(2Y6) receptor agonist) produced significant decreases in BrdU incorporation and cell counts. Adenosine, the metabolite of ATP, produced an increase in cell proliferation through stimulation of the A(1) receptor. A(2) and A(3) receptor stimulation had no effect. Reverse transcription and polymerase chain reaction analysis showed that mRNA transcripts for the P(2Y2), P(2Y4), P(2Y6), A(1), A(2), and A(3) receptor subtypes were present in cultured ASM cells. These data show that extracellular UTP, ATP, and their metabolites may affect airway remodeling by increasing or by reducing (P(2Y6) receptor) ASM cell proliferation
    corecore