14 research outputs found
Analysis of Clarithromycin Resistance and CagA Status in Helicobacter pylori by Use of Feces from Children in Thailand ▿
The clarithromycin resistance and CagA status of Helicobacter pylori in Thai children were investigated using fecal samples. Of the 284 samples, H. pylori was detected in 120 samples, and the clarithromycin resistance rate was 29.2%. The cagA gene was detected in 59 samples, and only 6.8% of these samples contained the East Asian CagA type
Generation of two human induced pluripotent stem cell lines derived from two X-linked adrenoleukodystrophy patients with ABCD1 mutations
Adrenoleukodystrophy (ALD) is an X-linked genetic disorder, characterized by demyelination in the central nervous system and adrenal insufficiency. Human induced pluripotent stem cell (hiPSC) lines derived from two Japanese male patients with ALD were generated from skin fibroblasts using retroviral vectors. The generated hiPSC lines showed self-renewal and pluripotency, and carried either a missense or a nonsense mutation in ABCD1 gene. Since the molecular pathogenesis caused by ABCD1 dysfunction remains unclear, these cell resources provide useful tools to establish disease models and to develop new therapies for X-ALD
Generation of MBP-tdTomato reporter human induced pluripotent stem cell line for live myelin visualization
Myelin basic protein (MBP) is a major component of the myelin sheaths of oligodendrocytes in the central nervous system and Schwann cells of the peripheral nervous system. Here we generated heterozygous fluorescent reporter of MBP gene in human induced pluripotent stem cells (hiPSCs). CRISPR/Cas9 genome editing technology was employed to knock in fused tdTomato fluorescent protein and EF1 alpha promoter-driven Bleomycin (Zeocin) resistance gene to the translational MBP C-terminal region. The resulting line, MBP-TEZ, showed tdTomato fluorescence upon oligodendrocyte differentiation. This reporter hiPSC line provides a precedential opportunity for monitoring human myelin formation and degeneration and purifying MBP-expressing cell lineages
Generation of human induced pluripotent stem cell lines derived from four Rett syndrome patients with MECP2 mutations
Rett syndrome is characterized by severe global developmental impairments with autistic features and loss of purposeful hand skills. Here we show that human induced pluripotent stem cell (hiPSC) lines derived from four Japanese female patients with Rett syndrome are generated from peripheral blood mononuclear cells using Sendai virus vectors. The generated hiPSC lines showed self-renewal and pluripotency and carried heterozygous frameshift, missense, or nonsense mutations in the MECP2 gene. Since the molecular pathogenesis caused by MECP2 dysfunction remains unclear, these cell resources are useful tools to establish disease models and develop new therapies for Rett syndrome
Generation of two human induced pluripotent stem cell lines derived from two X-linked adrenoleukodystrophy patients with ABCD1 mutations
Adrenoleukodystrophy (ALD) is an X-linked genetic disorder, characterized by demyelination in the central nervous system and adrenal insufficiency. Human induced pluripotent stem cell (hiPSC) lines derived from two Japanese male patients with ALD were generated from skin fibroblasts using retroviral vectors. The generated hiPSC lines showed self-renewal and pluripotency, and carried either a missense or a nonsense mutation in ABCD1 gene. Since the molecular pathogenesis caused by ABCD1 dysfunction remains unclear, these cell resources provide useful tools to establish disease models and to develop new therapies for X-ALD
Jdp2 is a spatiotemporal transcriptional activator of the AhR via the Nrf2 gene battery
Abstract Background Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the “AhR–Nrf2 gene battery”, which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood. Methods Knockdown and forced expression of AhR–Nrf2 battery members were used to examine the molecular interactions between the AhR–Nrf2 axis and AhR promoter activation. Sequential immunoprecipitation, chromatin immunoprecipitation, and histology were used to identify each protein complex recruited to their respective cis-elements in the AhR promoter. Actin fiber distribution, cell spreading, and invasion were examined to identify functional differences in the AhR–Jdp2 axis between wild-type and Jdp2 knockout cells. The possible tumorigenic role of Jdp2 in the AhR–Nrf2 axis was examined in mutant Kras-Trp53-driven pancreatic tumors. Results Crosstalk between AhR and Nrf2 was evident at the transcriptional level. The AhR promoter was activated by phase I ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the AhR–Jdp2–Nrf2 axis in a time- and spatial transcription-dependent manner. Jdp2 was a bifunctional activator of DRE- and ARE-mediated transcription in response to TCDD. After TCDD exposure, Jdp2 activated the AhR promoter at the DRE and then moved to the ARE where it activated the promoter to increase reactive oxygen species (ROS)-mediated functions such as cell spreading and invasion in normal cells, and cancer regression in mutant Kras-Trp53-driven pancreatic tumor cells. Conclusions Jdp2 plays a critical role in AhR promoter activation through the AhR–Jdp2–Nrf2 axis in a spatiotemporal manner. The AhR functions to maintain ROS balance and cell spreading, invasion, and cancer regression in a mouse model of mutant Kras–Trp53 pancreatic cancer. These findings provide new insights into the roles of Jdp2 in the homeostatic regulation of oxidative stress and in the antioxidation response in detoxification, inflammation, and cancer progression