36 research outputs found

    Structure, Function, and Application of Microbial Lactonases

    Get PDF

    Stereoselective Reduction of Ethyl 4-Chloro-3-Oxobutanoate by a Microbial Aldehyde Reductase in an Organic Solvent-Water Diphasic System

    No full text
    Enzyme-catalyzed asymmetric reduction of ethyl 4-chloro-3-oxobutanoate in an organic solvent-water diphasic system was studied. NADPH-dependent aldehyde reductase isolated from Sporobolomyces salmonicolor AKU4429 and glucose dehydrogenase were used as catalysts for reduction of ethyl 4-chloro-3-oxobutanoate and recycling of NADPH, respectively, in this system. In an aqueous system, the substrate was unstable. Inhibition of the reaction and inactivation of the enzymes by the substrate and the product were also observed. An n-butyl acetate-water diphasic system very efficiently overcame these limitations. In a 1,600-ml−1,600-ml scale diphasic reaction, ethyl (R)-4-chloro-3-hydroxybutanoate (0.80 mol; 86% enantiomeric excess) was produced from the corresponding oxoester in a molar yield of 95.4% with an NADPH turnover of 5,500 mol/mol

    Production of a Doubly Chiral Compound, (4R,6R)-4-Hydroxy-2,2,6-Trimethylcyclohexanone, by Two-Step Enzymatic Asymmetric Reduction

    No full text
    A practical enzymatic synthesis of a doubly chiral key compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, starting from the readily available 2,6,6-trimethyl-2-cyclohexen-1,4-dione is described. Chirality is first introduced at the C-6 position by a stereoselective enzymatic hydrogenation of the double bond using old yellow enzyme 2 of Saccharomyces cerevisiae, expressed in Escherichia coli, as a biocatalyst. Thereafter, the carbonyl group at the C-4 position is reduced selectively and stereospecifically by levodione reductase of Corynebacterium aquaticum M-13, expressed in E. coli, to the corresponding alcohol. Commercially available glucose dehydrogenase was also used for cofactor regeneration in both steps. Using this two-step enzymatic asymmetric reduction system, 9.5 mg of (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone/ml was produced almost stoichiometrically, with 94% enantiomeric excess in the presence of glucose, NAD(+), and glucose dehydrogenase. To our knowledge, this is the first report of the application of S. cerevisiae old yellow enzyme for the production of a useful compound

    Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies

    No full text
    Spatial reorganization of metabolic enzymes to form the “metabolic enzymes transiently assembling (META) body” is increasingly recognized as a mechanism contributing to regulation of cellular metabolism in response to environmental changes. A number of META body-forming enzymes, including enolase (Eno2p) and phosphofructokinase, have been shown to contain condensate-forming regions. However, whether all META body-forming enzymes have condensate-forming regions or whether enzymes have multiple condensate-forming regions remains unknown. The condensate-forming regions of META body-forming enzymes have potential utility in the creation of artificial intracellular enzyme assemblies. In the present study, the whole sequence of yeast pyruvate kinase (Cdc19p) was searched for condensate-forming regions. Four peptide fragments comprising 27–42 amino acids were found to form condensates. Together with the fragment previously identified from Eno2p, these peptide regions were collectively termed “META body-forming sequences (METAfos).” METAfos-tagged yeast alcohol dehydrogenase (Adh1p) was found to co-localize with META bodies formed by endogenous Cdc19p under hypoxic conditions. The effect of Adh1p co-localization with META bodies on cell metabolism was further evaluated. Expression of Adh1p fused with a METAfos-tag increased production of ethanol compared to acetic acid, indicating that spatial reorganization of metabolic enzymes affects cell metabolism. These results contribute to understanding of the mechanisms and biological roles of META body formation
    corecore