1,971 research outputs found

    Are Experienced Analysts More Accurate?

    Get PDF
    We examine the relationship between analyst experience and the accuracy of annual earnings forecasts using a 20-year sample (1983-2002) from the Thomson Financial First Call I/B/E/S database.  We test for this relationship using three different measures of forecast accuracy employed by prior researchers, which are regressed against measures of general experience and specific experience, along with five other controls, for four independent 5-year subperiods, as well as for the full 20-year period.  We find that general experience levels are positively associated with forecast accuracy (negatively associated with forecast error) in most subperiods for two of the three measures of forecast accuracy.  We also find, in contrast with the extant literature, that for two of the three measures of forecast accuracy and for most subperiods, specific experience does not have an association with forecast accuracy beyond that provided by the general experience measure.  Our results suggest that the relationship between forecast accuracy and analyst experience (as well as some other commonly examined analyst characteristics) is dependent on the measure of accuracy employed and the time period studied

    Relativity tests by complementary rotating Michelson-Morley experiments

    Full text link
    We report Relativity tests based on data from two simultaneous Michelson-Morley experiments, spanning a period of more than one year. Both were actively rotated on turntables. One (in Berlin, Germany) uses optical Fabry-Perot resonators made of fused silica; the other (in Perth, Australia) uses microwave whispering-gallery sapphire resonators. Within the standard model extension, we obtain simultaneous limits on Lorentz violation for electrons (5 coefficients) and photons (8) at levels down to 101610^{-16}, improved by factors between 3 and 50 compared to previous work.Comment: 5 pages revtex, 2 figure

    Improved test of Lorentz Invariance in Electrodynamics using Rotating Cryogenic Sapphire Oscillators

    Get PDF
    We present new results from our test of Lorentz invariance, which compares two orthogonal cryogenic sapphire microwave oscillators rotating in the lab. We have now acquired over 1 year of data, allowing us to avoid the short data set approximation (less than 1 year) that assumes no cancelation occurs between the κ~e\tilde{\kappa}_{e-} and κ~o+\tilde{\kappa}_{o+} parameters from the photon sector of the standard model extension. Thus, we are able to place independent limits on all eight κ~e\tilde{\kappa}_{e-} and κ~o+\tilde{\kappa}_{o+} parameters. Our results represents up to a factor of 10 improvement over previous non rotating measurements (which independently constrained 7 parameters), and is a slight improvement (except for κ~eZZ\tilde{\kappa}_{e-}^{ZZ}) over results from previous rotating experiments that assumed the short data set approximation. Also, an analysis in the Robertson-Mansouri-Sexl framework allows us to place a new limit on the isotropy parameter PMM=δβ+1/2P_{MM}=\delta-\beta+{1/2} of 9.4(8.1)×10119.4(8.1)\times10^{-11}, an improvement of a factor of 2.Comment: Accepted for publication in Phys. Rev.

    Forecast Constraints on Inflation from Combined CMB and Gravitational Wave Direct Detection Experiments

    Full text link
    We study how direct detection of the inflationary gravitational wave background constrains inflationary parameters and complements CMB polarization measurements. The error ellipsoids calculated using the Fisher information matrix approach with Planck and the direct detection experiment, BBO (Big Bang Observer), show different directions of parameter degeneracy, and the degeneracy is broken when they are combined. For a slow-roll parameterization, we show that BBO could significantly improve the constraints on the tensor-to-scalar ratio compared with Planck alone. We also look at a quadratic and a natural inflation model. In both cases, if the temperature of reheating is also treated as a free parameter, then the addition of BBO can significantly improve the error bars. In the case of natural inflation, we find that the addition of BBO could even partially improve the error bars of a cosmic variance-limited CMB experiment.Comment: 12 pages, 5 figures; matches version to appear in PRD; typos correcte

    Decoherence, fluctuations and Wigner function in neutron optics

    Get PDF
    We analyze the coherence properties of neutron wave packets, after they have interacted with a phase shifter undergoing different kinds of statistical fluctuations. We give a quantitative (and operational) definition of decoherence and compare it to the standard deviation of the distribution of the phase shifts. We find that in some cases the neutron ensemble is more coherent, even though it has interacted with a wider (i.e. more disordered) distribution of shifts. This feature is independent of the particular definition of decoherence: this is shown by proposing and discussing an alternative definition, based on the Wigner function, that displays a similar behavior. We briefly discuss the notion of entropy of the shifts and find that, in general, it does not correspond to that of decoherence of the neutron.Comment: 18 pages, 7 figure

    Electrodynamics with Lorentz-violating operators of arbitrary dimension

    Get PDF
    The behavior of photons in the presence of Lorentz and CPT violation is studied. Allowing for operators of arbitrary mass dimension, we classify all gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange density associated with the effective photon propagator. The covariant dispersion relation is obtained, and conditions for birefringence are discussed. We provide a complete characterization of the coefficients for Lorentz violation for all mass dimensions via a decomposition using spin-weighted spherical harmonics. The resulting nine independent sets of spherical coefficients control birefringence, dispersion, and anisotropy. We discuss the restriction of the general theory to various special models, including among others the minimal Standard-Model Extension, the isotropic limit, the case of vacuum propagation, the nonbirefringent limit, and the vacuum-orthogonal model. The transformation of the spherical coefficients for Lorentz violation between the laboratory frame and the standard Sun-centered frame is provided. We apply the results to various astrophysical observations and laboratory experiments. Astrophysical searches of relevance include studies of birefringence and of dispersion. We use polarimetric and dispersive data from gamma-ray bursts to set constraints on coefficients for Lorentz violation involving operators of dimensions four through nine, and we describe the mixing of polarizations induced by Lorentz and CPT violation in the cosmic-microwave background. Laboratory searches of interest include cavity experiments. We present the theory for searches with cavities, derive the experiment-dependent factors for coefficients in the vacuum-orthogonal model, and predict the corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review

    On the experimental determination of the one-way speed of light

    Full text link
    In this contribution the question of the isotropy of the one-way speed of light from an experimental perspective is addressed. In particular, we analyze two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities close paths. The procedure employed here will provide epistemological tools such that physicists understand that a direct measurement of the speed not only of light but of any physical entity is by no means trivial. Our results shed light on the physics behind the experiments which may be of interest for both physicists with an elemental knowledge in special relativity and philosophers of science.Comment: 8 pages, 5 figures. To appear in the European Journal of Physic

    Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators

    Full text link
    We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator-oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz Invariance in the frame-work of the photon sector of the Standard Model Extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured κ~eZZ\tilde{\kappa}_{e-}^{ZZ} component of 2.1(5.7)×10142.1(5.7)\times10^{-14}, and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of 0.9(2.0)×1010-0.9(2.0)\times 10^{-10} on the isotropy parameter, PMM=δβ+1/2P_{MM}=\delta - \beta + {1/2} is set, which is more than a factor of 7 improvement. More detailed description of the experiment and calculations can be found in: hep-ph/0506200Comment: Final published version, 4 pages, references adde

    Matrix equations and trilinear commutation relations

    Full text link
    In this paper we discuss a general algebraic approach to treating static equations of matrix models with a mass-like term. In this approach the equations of motions are considered as consequence of parafermi-like trilinear commutation relations. In this context we consider several solutions, including construction of noncommutative spheres. The equivalence of fuzzy spheres and parafermions is underlined.Comment: 10 pages, an incorrect claim is removed, one reference is adde
    corecore