363 research outputs found

    New Penrose Limits and AdS/CFT

    Full text link
    We find a new Penrose limit of AdS_5 x S^5 giving the maximally supersymmetric pp-wave background with two explicit space-like isometries. This is an important missing piece in studying the AdS/CFT correspondence in certain subsectors. In particular whereas the Penrose limit giving one space-like isometry is useful for the SU(2) sector of N=4 SYM, this new Penrose limit is instead useful for studying the SU(2|3) and SU(1,2|3) sectors. In addition to the new Penrose limit of AdS_5 x S^5 we also find a new Penrose limit of AdS_4 x CP^3.Comment: 30 page

    Quantum Computation with Coherent Spin States and the Close Hadamard Problem

    Full text link
    We study a model of quantum computation based on the continuously-parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.Comment: RevTeX4, 13 pages with 8 figures. Accepted for publication in Quantum Information Processing. Article number: s11128-015-1229-

    The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation

    Get PDF
    Cell death is critical to normal homeostasis, although this process, when increased aberrantly, can lead to the production of pro-inflammatory mediators promoting autoimmunity. Two novel intercellular mediators of inflammation generated during cell death are high mobility group box 1 (HMGB1) protein and microparticles (MPs). HMGB1 is a nuclear protein that functions in transcription when inside the nucleus but takes on pro-inflammatory properties when released during cell death. Microparticles are small, membrane-bound structures that extrude from cells when they die and contain cell surface proteins and nuclear material from their parent cells. MPs circulate widely throughout the vasculature and mediate long-distance communication between cells. Both MPs and HMGB1 have been implicated in the pathogenesis of a broad spectrum of inflammatory diseases, including the prototypic autoimmune conditions systemic lupus erythematosus and rheumatoid arthritis. Given their range of activity and association with active disease, both structures may prove to be targets for effective therapy in these and other disorders

    Global impression of perceived difficulties in children and adolescents with attention-deficit/hyperactivity disorder: Reliability and validity of a new instrument assessing perceived difficulties from a patient, parent and physician perspective over the day

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this analysis was to evaluate the psychometric properties of a brief scale developed to assess the degree of difficulties in children with Attention-Deficit/Hyperactivity Disorder (ADHD). The Global Impression of Perceived Difficulties (GIPD) scale reflects overall impairment, psychosocial functioning and Quality of Life (QoL) as rated by patient, parents and physician at various times of the day.</p> <p>Methods</p> <p>In two open-label studies, ADHD-patients aged 6–17 years were treated with atomoxetine (target-dose 0.5–1.2 mg/kg/day). ADHD-related difficulties were assessed up to week 24 using the GIPD. Data from both studies were combined to validate the scale.</p> <p>Results</p> <p>Overall, 421 patients received atomoxetine. GIPD scores improved over time. All three GIPD-versions (patient, parent, physician) were internally consistent; all items showed at least moderate item-total correlation. The scale showed good test-retest reliability over a two-week period from all three perspectives. Good convergent and discriminant validity was shown.</p> <p>Conclusion</p> <p>GIPD is an internally consistent, reliable and valid measure to assess difficulties in children with ADHD at various times of the day and can be used as indicator for psychosocial impairment and QoL. The scale is sensitive to treatment-related change.</p

    Molecular Characterizations of a Novel Putative DNA-Binding Protein LvDBP23 in Marine Shrimp L. vannamei Tissues and Molting Stages

    Get PDF
    Litopenaeus Vannamei, well known as pacific white shrimp, is the most popular shrimp in the world shrimp market. Identification and characterization of shrimp muscle regulatory genes are not only important for shrimp genetic improvement, but also facilitate comparative genomic tools for understanding of muscle development and regeneration.A novel mRNA encoding for a putative DNA-binding protein LvDBP23 was identified from Litopenaeus vannamei abdominal muscle cDNA library. The LvDBP23 cDNA contains 639 nucleotides of protein-coding sequence with deduced 212 amino acids of predicted molecular mass 23.32 kDa with glycine-rich domain at amino acid position 94-130. The mRNA sequence is successfully used for producing LvDBP23 recombinant protein in sf9 insect cell expression system. The expression of LvDBP23 mRNA is presented in abdominal muscle and swimming leg muscle, as well as other tissues including intestine, lymphoid and gill. The mRNA expression has the highest level in abdominal muscle in all tested tissues. LVDBP23 transcript during the molt cycle is highly expressed in the intermolt stage. In vitro nucleic acid-binding assays reveal that LvDBP23 protein can bind to both ssDNA and dsDNA, indicating its possible role of regulation of gene transcription.We are the first to report a DNA-binding protein identified from the abdominal muscle tissue of marine shrimp L. Vannamei. Its high-level specific expression during the intermot stage suggests its role in the regulation of muscle buildup during the growth phase of shrimp molt cycle

    Contribution of Distinct Homeodomain DNA Binding Specificities to Drosophila Embryonic Mesodermal Cell-Specific Gene Expression Programs

    Get PDF
    Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I–HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.National Institutes of Health (U.S.) (Grant R01 HG005287

    A revised evolutionary history of the CYP1A subfamily : gene duplication, gene conversion, and positive selection

    Get PDF
    Author Posting. Β© The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 62 (2006): 708-717, doi:10.1007/s00239-005-0134-z.Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5’ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated non-synonymous/synonymous substitution ratios within a putatively unconverted stretch of ~250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution.Funding for this work was provided by the NIH Superfund Basic Research Program at Boston University (5-P42-ES-07381) and by the Woods Hole Oceanographic Institution

    Health-related quality of life and distress in cancer patients: results from a large randomised study

    Get PDF
    To compare the effectiveness of individual support, group rehabilitation and a combination of the two in improving health-related quality of life (HRQOL) and psychological well-being in cancer patients during 24 months after diagnosis, as compared with standard care (SC). Furthermore, to compare the study sample and a random sample of the Swedish population with regard to HRQOL. A total of 481 consecutive patients, newly diagnosed with cancer, were randomly assigned to one of the four alternatives. Data on HRQOL and psychological well-being were collected at baseline and after 3, 6, 12 and 24 months. The interventions did not improve HRQOL or psychological well-being, as compared with SC. At 3 months, the study sample reported an HRQOL comparable with the normal population. Many cancer patients are able to manage their cancer-related concerns with the support available from SC. However, it is reasonable to assume that the findings suffer from a lack of data from especially vulnerable patients and a possible Hawthorne effect. It cannot be concluded that cancer patients have no need for additional psychosocial interventions. Future projects should include screening and target interventions for those at risk for significant and prolonged psychological distress

    A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis

    Get PDF
    Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA–based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type–specific developmental gene expression patterns
    • …
    corecore