1,243 research outputs found

    2P/Encke, the Taurid complex NEOs and the Maribo and Sutter’s Mill meteorites

    Get PDF
    Aims. 2P/Encke is a short period comet that was discovered in 1786 and has been extensively observed and studied for more than 200 years. The Taurid meteoroid stream has long been linked with 2P/Encke owing to a good match of their orbital elements, even though the comet’s activity is not strong enough to explain the number of observed meteors. Various small near-Earth objects (NEOs) have been discovered with orbits that can be linked to 2P/Encke and the Taurid meteoroid stream. Maribo and Sutter’s Mill are CM type carbonaceous chondrite that fell in Denmark on January 17, 2009 and April 22, 2012, respectively. Their pre-atmospheric orbits place them in the middle of the Taurid meteoroid stream, which raises the intriguing possibility that comet 2P/Encke could be the parent body of CM chondrites. Methods. To investigate whether a relationship between comet 2P/Encke, the Taurid complex associated NEOs, and CM chondrites exists, we performed photometric and spectroscopic studies of these objects in the visible wavelength range. We observed 2P/Encke and 10 NEOs on August 2, 2011 with the FORS instrument at the 8.2 m Very Large Telescope on Cerro Paranal (Chile). Results. Images in the R filter, used to investigate the possible presence of cometary activity around the nucleus of 2P/Encke and the NEOs, show that no resolved coma is present. None of the FORS spectra show the 700 nm absorption feature due to hydrated minerals that is seen in the CM chondrite meteorites. All objects show featureless spectra with moderate reddening slopes at λ10 and 1999 VT25, which show a flatter spectrum, the spectral slope of the observed NEOs is compatible with that of 2P/Encke. However, most of the NEOs show evidence of a silicate absorption in lower S/N data at λ> 800 nm, which is not seen in 2P/Encke, which suggests that they are not related. Conclusions. Despite similar orbits, we find no spectroscopic evidence for a link between 2P/Encke, the Taurid complex NEOs and the Maribo and Sutter’s Mill meteorites. However, we cannot rule out a connection to the meteorites either, as the spectral differences may be caused by secondary alteration of the surfaces of the NEOs

    WISE J072003.20-084651.2: An Old and Active M9.5 + T5 Spectral Binary 6 pc from the Sun

    Get PDF
    [Abridged] We report observations of the recently discovered, nearby late-M dwarf WISE J072003.20-084651.2. Astrometric measurements obtained with TRAPPIST improve the distance measurement to 6.0±\pm1.0 pc and confirm the low tangential velocity (3.5±\pm0.6 km/s) reported by Scholz. Low-resolution optical spectroscopy indicates a spectral type of M9.5 and prominent Hα\alpha emission ( = -4.68±\pm0.06), but no evidence of subsolar metallicity or Li I absorption. Near-infrared spectroscopy reveals subtle peculiarities indicating the presence of a T5 binary companion, and high-resolution laser guide star adaptive optics imaging reveals a faint (Δ\DeltaH = 4.1) candidate source 0"14 (0.8 AU) from the primary. We measure a stable radial velocity of +83.8±\pm0.3 km/s, indicative of old disk kinematics and consistent with the angular separation of the possible companion. We measure a projected rotational velocity of v sin i = 8.0±\pm0.5 km/s, and find evidence of low-level variability (~1.5%) in a 13-day TRAPPIST lightcurve, but cannot robustly constrain the rotational period. We also observe episodic changes in brightness (1-2%) and occasional flare bursts (4-8%) with a 0.8% duty cycle, and order-of-magnitude variations in Hα\alpha line strength. Combined, these observations reveal WISE J0720-0846 to be an old, very low-mass binary whose components straddle the hydrogen burning minimum mass, and whose primary is a relatively rapid rotator and magnetically active. It is one of only two known binaries among late M dwarfs within 10 pc of the Sun, both harboring a mid T-type brown dwarf companion. While this specific configuration is rare (1.4% probability), roughly 25% of binary companions to late-type M dwarfs in the local population are likely low-temperature T or Y brown dwarfs.Comment: 18 pages, 23 figures; accepted for publication in A

    High-dimensional quantum dynamics of adsorption and desorption of H2_2 at Cu(111)

    Full text link
    We performed high-dimensional quantum dynamical calculations of the dissociative adsorption and associative desorption of hydrogen on Cu(111). The potential energy surface (PES) is obtained from density functional theory calculations. Two regimes of dynamics are found, at low energies sticking is determined by the minimum energy barrier, at high energies by the distribution of barrier heights. Experimental results are well-reproduced qualitatively, but some quantitative discrepancies are identified as well.Comment: 4 two column pages, revtex, 4 figures, to appear in Phys. Rev. Let

    Long-term CO<sub>2</sub> production following permafrost thaw

    Get PDF
    Thawing permafrost represents a poorly understood feedback mechanism of climate change in the Arctic, but with a potential impact owing to stored carbon being mobilized1–5. We have quantified the long-term loss of carbon (C) from thawing permafrost in Northeast Greenland from 1996 to 2008 by combining repeated sediment sampling to assess changes in C stock and&gt;12 years of CO2 production in incubated permafrost samples. Field observations show that the active-layer thickness has increased by&gt;1 cm yr−1 but thawing has not resulted in a detectable decline in C stocks. Laboratory mineralization rates at 5 ◦C resulted in a C loss between 9 and 75%, depending on drainage, highlighting the potential of fast mobilization of permafrost C under aerobic conditions, but also that C at near-saturated conditions may remain largely immobilized over decades. This is confirmed by a three-pool

    APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    Full text link
    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS

    Real-Gas Effects and Phase Separation in Underexpanded Jets at Engine-Relevant Conditions

    Full text link
    A numerical framework implemented in the open-source tool OpenFOAM is presented in this work combining a hybrid, pressure-based solver with a vapor-liquid equilibrium model based on the cubic equation of state. This framework is used in the present work to investigate underexpanded jets at engine-relevant conditions where real-gas effects and mixture induced phase separation are probable to occur. A thorough validation and discussion of the applied vapor-liquid equilibrium model is conducted by means of general thermodynamic relations and measurement data available in the literature. Engine-relevant simulation cases for two different fuels were defined. Analyses of the flow field show that the used fuel has a first order effect on the occurrence of phase separation. In the case of phase separation two different effects could be revealed causing the single-phase instability, namely the strong expansion and the mixing of the fuel with the chamber gas. A comparison of single-phase and two-phase jets disclosed that the phase separation leads to a completely different penetration depth in contrast to single-phase injection and therefore commonly used analytical approaches fail to predict the penetration depth.Comment: Preprint submitted to AIAA Scitech 2018, Kissimmee, Florid
    • …
    corecore