5 research outputs found
Structure des grands bassins glaciaires dans le nord de la péninsule ibérique : comparaison entre les vallées d'Andorre (Pyrénées orientales), du Gallego (Pyrénées centrales) et du Trueba (Chaßne cantabrique)
Les grandes vallĂ©es glaciaires de la PĂ©ninsule IbĂ©rique sont situĂ©es dans la chaĂźne pyrĂ©nĂ©o-cantabrique, principalement dans le bassin de lâĂbre. Ainsi, les vallĂ©es dâAndorre, de la Noguera Pallaresa et de la haute vallĂ©e du GĂĄllego, dans les PyrĂ©nĂ©es, ont eu des appareils glaciaires longs de 42, 50 et 40 km respectivement. Dans les vallĂ©es du Sil (bassin du Miño) et du Trueba, dans la ChaĂźne Cantabrique, ils atteignaient 42 et 16,5 km (Serrano-Cañadas, 1996 ; GĂłmez-Ortiz et al., 2001 ; Turu & Peña, 2006a et b ; Redondo-Vega et al., 2006). Lâune des caractĂ©ristiques gĂ©omorphologiques de la plupart de ces vallĂ©es est lâexistence dâune dĂ©pression morphologique du substratum dans les parties moyennes et terminales, interprĂ©tĂ©e comme la consĂ©quence de lâĂ©rosion glaciaire. Dans tous les cas, on observe une architecture litho-stratigraphique commune (Vilaplana & Casas, 1983 ; Bordonau et al., 1989 ; Bordonau, 1992 ; Turu et al., 2002) reprĂ©sentĂ©e par trois unitĂ©s gĂ©oĂ©lectriques : une unitĂ© infĂ©rieure trĂšs Ă©paisse, avec des rĂ©sistivitĂ©s Ă©lectriques basses (70 â 200 Ohms par mĂštre), qui traduit la prĂ©sence de matĂ©riaux fins considĂ©rĂ©s comme dâorigine lacustre ; une unitĂ© intermĂ©diaire, moins Ă©paisse, avec des valeurs de rĂ©sistivitĂ© plus Ă©levĂ©es (400 â 800 Ohms par mĂštre), pouvant ĂȘtre interprĂ©tĂ©e comme un systĂšme fluvio-deltaĂŻque proâglaciaire et une unitĂ© gĂ©oĂ©lectrique supĂ©rieure, avec des valeurs de rĂ©sistivitĂ© trĂšs variables (100 â 1500 Ohms par mĂštre), constituĂ©e de sĂ©diments alluviaux subactuels. La comparaison des donnĂ©es de type gĂ©ophysique et gĂ©omĂ©canique (sismique Ă rĂ©fraction et essais pressiomĂ©triques) montre que lâunitĂ© intermĂ©diaire, considĂ©rĂ©e comme dâorigine fluvio-deltaĂŻque, prĂ©sente des valeurs de vitesse sismique anormalement Ă©levĂ©es, ainsi que de hautes valeurs de consolidation. Cette observation effectuĂ©e pour la premiĂšre fois dans la vallĂ©e dâAndorre (Turu, 2000) montre des remarquables corrĂ©lations entre les hautes vitesses sismiques et les valeurs Ă©levĂ©es de consolidation, ainsi que la trĂšs nette corrĂ©lation entre les hautes valeurs de consolidation et les tills sous-glaciaires. Elle permet dâinterprĂ©ter lâunitĂ© intermĂ©diaire comme essentiellement glaciaire et de remettre en question le modĂšle simple dâune sĂ©quence de comblement lacustre et deltaĂŻque proposĂ© jusquÂŽĂ maintenant.Valley glaciers between 16 and 50 km in length developed during Pleistocene glacial maxima in the southern part of the Pyrenean-Cantabric range (Iberian Peninsula). Glacially-overdeepened basins are a common feature of the middle and lower sections of these glaciated valleys. Three geoelectrical units can be recognized in several basins: a thick lower unit, with low resistivity values (70 â 200 Ohms per metre), interpreted as fine glaciolacustrine deposits; a thinner intermediate unit, with higher resistivity values (400 â 800 Ohms per metre), interpreted as glaciofluvial deltaic deposits; and an upper geoelectrical unit with very variable resistivity values (100 â 1500 Ohms per metre) considered to be recent alluvial deposits. Vertical electrical resistivity soundings (VES) have been complemented by seismic soundings and geotechnical tests. Seismic profiles show anomalous high velocities (higher than 3000 m/sec) for the intermediate geoelectrical unit of deltaic sands and gravels. Pressurometer tests carried out in the sediments corresponding to the upper unit also show anomalously high pre-consolidation values (higher than 2 MPa) which cannot be attribuated to the sedimentary load. As shown by Boulton & Hindmarsh (1987), Boulton & Dobbie (1993), Boulton et al. (2001) in an Icelandic glacier, and Turu (2000) in the Andorra glaciated valley, layers with high seismic velocities and high consolidation values are best explained as subglacial tills deposited in setting of a high hydraulic gradients. The new data also suggests that the intermediate geoelectrical unit is of glacial origin
Structure of the large glacial basins in the northern Iberian Peninsula, a comparison study: Andorra (Eastern Pyrenees), Gallego (Central Pyrenees) and Trueba (Cantabric range)
17 pĂĄginas, 1 figuras, 2 tablas.-- et al.[EN]: Valley glaciers between 16 and 50 km in length developed during Pleistocene glacial maxima in the southern part of the Pyrenean-Cantabric
range (Iberian Peninsula). Glacially-overdeepened basins are a common feature of the middle and lower sections of these glaciated valleys. Three
geoelectrical units can be recognized in several basins: a thick lower unit, with low resistivity values (70 â 200 Ohms per metre), interpreted as fine glaciolacustrine deposits; a thinner intermediate unit, with higher resistivity values (400 â 800 Ohms per metre), interpreted as glaciofluvial deltaic
deposits; and an upper geoelectrical unit with very variable resistivity values (100 â 1500 Ohms per metre) considered to be recent alluvial deposits.
Vertical electrical resistivity soundings (VES) have been complemented by seismic soundings and geotechnical tests. Seismic profiles show
anomalous high velocities (higher than 3000 m/sec) for the intermediate geoelectrical unit of deltaic sands and gravels. Pressurometer tests carried
out in the sediments corresponding to the upper unit also show anomalously high pre-consolidation values (higher than 2 MPa) which cannot be
attribuated to the sedimentary load. As shown by Boulton & Hindmarsh (1987), Boulton & Dobbie (1993), Boulton et al. (2001) in an Icelandic
glacier, and Turu (2000) in the Andorra glaciated valley, layers with high seismic velocities and high consolidation values are best explained as
subglacial tills deposited in setting of a high hydraulic gradients. The new data also suggests that the intermediate geoelectrical unit is of glacial
origin.[FR]: Les grandes vallĂ©es glaciaires de la PĂ©ninsule IbĂ©rique sont situĂ©es dans la chaĂźne pyrĂ©nĂ©o-cantabrique, principalement dans le bassin de lâĂbre. Ainsi, les vallĂ©es dâAndorre, de la Noguera Pallaresa et de la haute vallĂ©e du GĂĄllego, dans les PyrĂ©nĂ©es, ont eu des appareils glaciaires longs de 42, 50 et 40 km respectivement. Dans les vallĂ©es du Sil (bassin du Miño) et du Trueba, dans la ChaĂźne Cantabrique, ils atteignaient 42 et 16,5 km (Serrano-Cañadas, 1996 ; GĂłmez-Ortiz et al., 2001 ; Turu & Peña, 2006a et b ; Redondo-Vega et al., 2006). Lâune des caractĂ©ristiques gĂ©omorphologiques de la plupart de ces vallĂ©es est lâexistence dâune dĂ©pression morphologique du substratum dans les parties moyennes et terminales, interprĂ©tĂ©e comme la consĂ©quence de lâĂ©rosion glaciaire. Dans tous les cas, on observe une architecture litho-stratigraphique commune (Vilaplana & Casas, 1983 ; Bordonau et al., 1989 ; Bordonau, 1992 ; Turu et al., 2002) reprĂ©sentĂ©e par trois unitĂ©s gĂ©oĂ©lectriques : une unitĂ© infĂ©rieure trĂšs Ă©paisse, avec des rĂ©sistivitĂ©s Ă©lectriques basses (70 â 200 Ohms par mĂštre), qui traduit la prĂ©sence de matĂ©riaux fins considĂ©rĂ©s comme dâorigine lacustre ; une unitĂ© intermĂ©diaire, moins Ă©paisse, avec des valeurs de rĂ©sistivitĂ© plus Ă©levĂ©es (400 â 800 Ohms par mĂštre), pouvant ĂȘtre interprĂ©tĂ©e comme un systĂšme fluvio-deltaĂŻque pro-glaciaire et une unitĂ© gĂ©oĂ©lectrique supĂ©rieure, avec des valeurs de rĂ©sistivitĂ© trĂšs variables (100 â 1500 Ohms par mĂštre), constituĂ©e de sĂ©diments alluviaux subactuels. La comparaison des donnĂ©es de type gĂ©ophysique et gĂ©omĂ©canique (sismique Ă rĂ©fraction et essais pressiomĂ©triques) montre que lâunitĂ© intermĂ©diaire, considĂ©rĂ©e comme dâorigine fluvio-deltaĂŻque, prĂ©sente des valeurs de vitesse sismique anormalement Ă©levĂ©es, ainsi que de hautes valeurs de consolidation. Cette observation effectuĂ©e pour la premiĂšre fois dans la vallĂ©e dâAndorre (Turu, 2000) montre des remarquables corrĂ©lations entre les hautes vitesses sismiques et les valeurs Ă©levĂ©es de consolidation, ainsi que la trĂšs nette corrĂ©lation entre les hautes valeurs de consolidation et les tills sous-glaciaires. Elle permet dâinterprĂ©ter lâunitĂ© intermĂ©diaire comme essentiellement glaciaire et de remettre en question le modĂšle simple dâune sĂ©quence de comblement lacustre et deltaĂŻque proposĂ© jusquÂŽĂ maintenant.Peer reviewe
Late glacial and post-glacial deposits of the Navamuño peatbog (Iberian Central System): Chronology and paleoenvironmental implications
The Navamuño peatbog (Sierra de BĂ©jar, western Spain) is a âŒ14 ha pseudo-endorheic depression with boundaries defined by a lateral moraine of the Cuerpo de Hombre paleoglacier and fault-line scarps on granite bedrock. The stratigraphy of the Navamuño peatbog system is characterized here using borehole data to a depth of 20 m. An integrated interpretation from direct-push coring, dynamic probing boreholes and handheld auger drillings advances our knowledge of the Navamuño polygenetic infill. Correlating this data with those obtained in other studies of the chronology and evolutionary sequence of the Cuerpo de Hombre paleoglacier has enabled us to establish the sequence of the hydrological system in the Navamuño depression. During the Late Pleistocene (MIS2), the depression was dammed by the Cuerpo de Hombre glacier and fed by its lateral meltwaters, and was filled with glaciolacustrine deposits. The onset of the Holocene in Navamuño is linked to a flat, fluviotorrential plain with episodes of local shallow pond/peat bog sedimentation. This evolutionary sequence is congruent with the age model obtained from available radiocarbon dating, obtaining 19 ages from âŒ800 cal yr BP (at depth 1.11 m) to âŒ16800 cal yr BP (at depth 15.90â16.0 m). Finally, the sedimentary record enabled interpretation of the environmental changes occurring in this zone during the late glacial (from the Older Dryas to the Younger Dryas) and postglacial (Holocene) stages, placing them within the paleoclimatic context of the Iberian Peninsula and Mediterranean regions.This work was supported by the Spanish Ministry of Economy and Competitiveness (Projects CGL2013-44076-P and CGL2016-78380-P). The authors also wish to acknowledge the help and assistance of the Regional Environment Department (JCyL) and the Local Authority in the village of Candelario. Valenti Turu acknowledges grant ATC013 -and- 2015/2016 from the Government of Andorra.Peer reviewe
Q5 Le Quaternaire, Limites et spécificités - TroisiÚme partie
Colloque international organisé par le CNF-INQUA et l'AFEQ Muséum national d'Histoire naturelle (Paris, 1-3 février 2006