3 research outputs found

    Nanomaterials Synthesis Discovery via Parallel Electrochemical Deposition

    No full text
    Electrodeposition of nanoparticles is investigated with a multichannel potentiostat in electrochemical and chemical arrays. De novo deposition and shape control of palladium nanoparticles are explored in arrays with a two-stage strategy. Initial conditions for electrodeposition of materials are discovered in a first stage and then used in a second stage to logically expand chemical and electrochemical parameters. Shape control is analyzed primarily with scanning electron microscopy. Using this approach, optimized conditions for the electrodeposition of cubic palladium nanoparticles were identified from a set of previously untested electrodeposition conditions. The parameters discovered through the array format were then successfully extrapolated to a traditional bulk three-electrode electrochemical cell. Electrochemical arrays were also used to explore electrodeposition parameters reported in previous bulk studies, further demonstrating the correspondence between the array and bulk systems. These results broadly highlight opportunities for electrochemical arrays, both for discovery and for further investigations of electrodeposition in nanomaterials synthesis

    Anisotropic Nanoparticles as Shape-Directing Catalysts for the Chemical Etching of Silicon

    No full text
    Anisotropic Au nanoparticles have been used to create a library of complex features on silicon surfaces. The technique provides control over feature size, shape, and depth. Moreover, a detailed study of the etching rate as a function of the nanoparticle surface facet interfaced with the silicon substrate suggested that the etching is highly dependent upon the facet surface energy. Specifically, the etching rate for Au nanocubes with {100}-terminated facets was ∼1.5 times higher than that for triangular nanoprisms with {111} facets. Furthermore, this work gives fundamental insight into the mechanism of metal-catalyzed chemical etching

    Chemically Isolating Hot Spots on Concave Nanocubes

    No full text
    We report a simple and general strategy for selectively exposing and functionalizing the sharp corners of concave nanocubes, which are the SERS hot spots for such structures. This strategy takes advantage of the unique shape of the concave cubes by coating the particles with silica and then etching it away to expose only the corner regions, while maintaining the silica coating in the concave faces. These corner regions can then be selectively modified for improved enhancement and signal response with SERS
    corecore