23 research outputs found

    A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin

    Get PDF
    There is growing evidence that the release of phosphorus (P) from legacy stores can frustrate efforts to reduce P loading to surface water from sources such as agriculture and human sewage. Less is known, however, about the magnitude and residence times of these legacy pools. Here we constructed a budget of net anthropogenic P inputs to the Baltic Sea drainage basin and developed a three-parameter, two-box model to describe the movement of anthropogenic P though temporary (mobile) and long-term (stable) storage pools. Phosphorus entered the sea as direct coastal effluent discharge and via rapid transport and slow, legacy pathways. The model reproduced past waterborne P loads and suggested an similar to 30-year residence time in the mobile pool. Between 1900 and 2013, 17 and 27 Mt P has accumulated in the mobile and stable pools, respectively. Phosphorus inputs to the sea have halved since the 1980s due to improvements in coastal sewage treatment and reductions associated with the rapid transport pathway. After decades of accumulation, the system appears to have shifted to a depletion phase; absent further reductions in net anthropogenic P input, future waterborne loads could decrease. Presently, losses from the mobile pool contribute nearly half of P loads, suggesting that it will be difficult to achieve substantial near-term reductions. However, there is still potential to make progress toward eutrophication management goals by addressing rapid transport pathways, such as overland flow, as well as mobile stores, such as cropland with large soil-P reserves.Peer reviewe

    Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture

    Get PDF
    While progress has been made in reducing external nutrient inputs to the Baltic Sea, further actions are needed to meet the goals of the Baltic Sea Action Plan (BSAP), especially for the Baltic Proper, Gulf of Finland, and Gulf of Riga sub-basins. We used the net anthropogenic nitrogen and phosphorus inputs (NANI and NAPI, respectively) nutrient accounting approach to construct three scenarios of reduced NANI-NAPI. Reductions assumed that manure nutrients were redistributed from areas with intense animal production to areas that focus on crop production and would otherwise import synthetic and mineral fertilizers. We also used the Simple as Necessary Baltic Long Term Large Scale (SANBALTS) model to compare eutrophication conditions for the scenarios to current and BSAP-target conditions. The scenarios suggest that reducing NANI-NAPI by redistributing manure nutrients, together with improving agronomic practices, could meet 54-82% of the N reductions targets (28-43 kt N reduction) and 38-64% P reduction targets (4-6.6 kt P reduction), depending on scenario. SANBALTS output showed that even partial fulfillment of nutrient reduction targets could have ameliorating effects on eutrophication conditions. Meeting BSAP targets will require addressing additional sources, such as sewage. A common approach to apportioning sources to external nutrients loads could enable further assessment of the feasibility of eutrophication management targets.Peer reviewe

    Life on the stoichiometric knife-edge: effects of high and low food C:P ratio on growth, feeding, and respiration in three Daphnia species

    Get PDF
    Recently, data have emerged indicating that not only high food carbon:phosphorus (C:P) ratio but also low food C:P (P-rich food) can have negative effects on the growth of consumers. The shape of this “stoichiometric knife edge,” however, is not yet well-documented, and the mechanisms underpinning it are not understood. Here we report the results of experiments using 3 species of Daphnia (D. magna, D. pulicaria, D. pulex) consuming the green alga Scenedesmus acutus with widely varying C:P ratios (from <50 to >1500 by atoms). The experiments were designed to (1) characterize the potential stoichiometric knife edge for each species, and (2) evaluate potential changes in feeding and respiration rates that may underpin the unimodal response to food C:P. All 3 Daphnia species grew more slowly when food C:P (atomic) exceeded ~250–300 but also when C:P was <120. Both high and low C:P foods were associated with increased respiration rates, indicating that the negative effects of food C:P imbalance at least partially involve increased metabolic costs of dealing with stoichiometrically imbalanced food. Feeding rate experiments indicated that, in contrast with limited previous data, animals generally increased their feeding rate on P-rich food. Overall, the “lower threshold elemental ratio” we identify here (~120) is surprisingly high, in an ecologically meaningful range, suggesting that negative effects of excessive food P content may play an under-recognized role in affecting Daphnia performance in P-rich lakes with low seston C:P ratio. Such effects also need to be incorporated into stoichiometrically explicit models of planktonic trophic interactions

    Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition

    Full text link

    Factors influencing export of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model

    No full text
    Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in depth. Much less is known, however, about seasonal patterns and controls of coastal DIN delivery across large spatial scales. Understanding seasonal patterns of DIN export is critical to efforts to predict impacts of coastal eutrophication, such as algal blooms and hypoxic areas, which are often seasonal phenomena. Here we describe, test, and apply a global model that predicts seasonal DIN export to coastal regions for >6000 rivers using the Nutrient Export from Watersheds (NEWS2) model. NEWS2-DIN-S used spatially explicit, seasonal N inputs and was calibrated with measured DIN yield (kgNkm(-2) season(-1)) for 77 rivers, distributed globally. Of the characteristics considered, DIN-transport efficiency was positively related to runoff and negatively related to temperature (r(2)=0.34-0.60, depending on season p<0.0001), likely due to flushing effects and increased retention by plants and soils, respectively. NEWS2-DIN-S incorporated these insights and performed well in predicting DIN yield (Nash-Sutcliffe Efficiency=0.54-0.65, depending on season). Catchments were effective in retaining DIN and average export rates were lower during the growing season (3-5% of total nitrogen inputs) compared to other seasons (6-10%) for major latitude bands. Model output was insensitive to changes in the magnitude of N inputs, suggesting that refinement of seasonal N input budgets will not substantially improve model performance. Rather, better representation of land-to-river N transfers could improve future models because of strong landscape N attenuation.Key PointsCatchment DIN attenuation is greater in summer compared to other seasons Both runoff and temperature influence seasonal DIN-transport efficiency Depending on season and latitude, 3-10% of TN inputs are exported as DI

    Reducing agricultural nutrient surpluses in a large catchment - Links to livestock density

    Get PDF
    The separation between crop- and livestock production is an important driver of agricultural nutrient surpluses in many parts of the world. Nutrient surpluses can be symptomatic of poor resource use efficiency and contribute to environmental problems. Thus, it is important not only to identify where surpluses can be reduced, but also the potential policy tools that could facilitate reductions. Here, we explored linkages between livestock production and nutrient flows for the Baltic Sea catchment and discuss management practices and policies that influence the magnitude of nutrient surpluses. We found that the majority of nutrients cycled through the livestock sector and that large nitrogen and phosphorus surpluses often occurred in regions with high livestock density. Imports of mineral fertilizers and feed to the catchment increased overall surpluses, which in turn increased the risk of nutrient losses from agriculture to the aquatic environment. Many things can be done to reduce agricultural nutrient surpluses; an important example is using manure nutrients more efficiently in crop production, thereby reducing the need to import mineral fertilizers. Also, existing soil P reserves could be used to a greater extent, which further emphasizes the need to improve nutrient management practices. The countries around the Baltic Sea used different approaches to manage agricultural nutrient surpluses, and because eight of the coastal countries are members in the European Union (EU), common EU policies play an important role in management. We observed reductions in surpluses between 2000 and 2010 in some countries, which suggested the influence of different approaches to management and policy and that there are opportunities for further improvement. However, the separation between crop and livestock production in agriculture appears to be an underlying cause of nutrient surpluses; thus, further research is needed to understand how policy can address these structural issues and increase sustainability in food production. (C) 2018 The Authors. Published by Elsevier B.V.Peer reviewe
    corecore