5 research outputs found

    Structural and Functional Consequences of Three Cancer-Associated Mutations of the Oncogenic Phosphatase SHP2

    No full text
    The proto-oncogene <i>PTPN11</i> encodes a cytoplasmic protein tyrosine phosphatase, SHP2, which is required for normal development and sustained activation of the Ras-MAPK signaling pathway. Germline mutations in SHP2 cause developmental disorders, and somatic mutations have been identified in childhood and adult cancers and drive leukemia in mice. Despite our knowledge of the <i>PTPN11</i> variations associated with pathology, the structural and functional consequences of many disease-associated mutants remain poorly understood. Here, we combine X-ray crystallography, small-angle X-ray scattering, and biochemistry to elucidate structural and mechanistic features of three cancer-associated SHP2 variants harboring single point mutations within the N-SH2:PTP interdomain autoinhibitory interface. Our findings directly compare the impact of each mutation on autoinhibition of the phosphatase and advance the development of structure-guided and mutation-specific SHP2 therapies

    Optimization of Fused Bicyclic Allosteric SHP2 Inhibitors

    No full text
    SHP2 is a nonreceptor protein tyrosine phosphatase within the mitogen-activated protein kinase (MAPK) pathway controlling cell growth, differentiation, and oncogenic transformation. SHP2 also participates in the programed cell death pathway (PD-1/PD-L1) governing immune surveillance. Small-molecule inhibition of SHP2 has been widely investigated, including in our previous reports describing SHP099 (2), which binds to a tunnel-like allosteric binding site. To broaden our approach to allosteric inhibition of SHP2, we conducted additional hit finding, evaluation, and structure-based scaffold morphing. These studies, reported here in the first of two papers, led to the identification of multiple 5,6-fused bicyclic scaffolds that bind to the same allosteric tunnel as 2. We demonstrate the structural diversity permitted by the tunnel pharmacophore and culminated in the identification of pyrazolopyrimidinones (e.g., SHP389, 1) that modulate MAPK signaling in vivo. These studies also served as the basis for further scaffold morphing and optimization, detailed in the following manuscript

    6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors

    No full text
    Protein tyrosine phosphatase SHP2 is an oncoprotein associated with cancer as well as a potential immune modulator because of its role in the programmed cell death PD-L1/PD-1 pathway. In the preceding manuscript, we described the optimization of a fused, bicyclic screening hit for potency, selectivity, and physicochemical properties in order to further expand the chemical diversity of allosteric SHP2 inhibitors. In this manuscript, we describe the further expansion of our approach, morphing the fused, bicyclic system into a novel monocyclic pyrimidinone scaffold through our understanding of SAR and use of structure-based design. These studies led to the identification of SHP394 (1), an orally efficacious inhibitor of SHP2, with high lipophilic efficiency, improved potency, and enhanced pharmacokinetic properties. We also report other pyrimidinone analogues with favorable pharmacokinetic and potency profiles. Overall, this work improves upon our previously described allosteric inhibitors and exemplifies and extends the range of permissible chemical templates that inhibit SHP2 via the allosteric mechanism

    Dual Allosteric Inhibition of SHP2 Phosphatase

    No full text
    SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the <i>PTPN11</i> gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (<b>1</b>) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (<b>2</b>) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that <b>2</b> binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding siteî—¸a cleft formed at the interface of the <i>N</i>-terminal SH2 and PTP domains. Derivatization of <b>2</b> using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by <b>1</b> and <b>2</b> was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies

    Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    No full text
    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the <i>PTPN11</i> gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)­pyrazin-2-amine (SHP099, <b>1</b>), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor
    corecore