1,296 research outputs found

    Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores

    Get PDF
    The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures

    Clinical studies of the high-intensity narrow-spectrum light environmental decontamination system (HINS-light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings

    Get PDF
    Infections are the leading cause of morbidity and mortality in burn patients and prevention of contamination from exogenous sources including the hospital environment is becoming increasingly emphasised. The High-Intensity Narrow-Spectrum light Environmental Decontamination System (HINS-light EDS) is bactericidal yet safe for humans, allowing continuous disinfection of the environment surrounding burn patients. Environmental samples were collected from inpatient isolation rooms and the outpatient clinic in the burn unit, and comparisons were then made between the bacterial contamination levels observed with and without use of the HINS-light EDS. Over 1000 samples were taken. Inpatient studies, with sampling carried out at 0800 h, demonstrated a significant reduction in the average number of bacterial colonies following HINS-light EDS use of between 27% and 75%, (p<0.05). There was more variation when samples were taken at times of increased activity in the room. Outpatient studies during clinics demonstrated a 61% efficacy in the reduction of bacterial contamination on surfaces throughout the room during the course of a clinic (p=0.02). The results demonstrate that use of the HINS-light EDS allows efficacious bacterial reductions over and above that achieved by standard cleaning and infection control measures in both inpatient and outpatient settings in the burn unit

    New proof-of-concept in viral inactivation: virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination

    Get PDF
    The requirement for novel decontamination technologies for use in hospitals is ever present. One such system uses 405 nm visible light to inactivate microorganisms via ROS-generated oxidative damage. Although effective for bacterial and fungal inactivation, little is known about the virucidal effects of 405 nm light. Norovirus (NoV) gastroenteritis outbreaks often occur in the clinical setting, and this study was designed to investigate potential inactivation effects of 405 nm light on the NoV surrogate, feline calicivirus (FCV). FCV was exposed to 405 nm light whilst suspended in minimal and organically-rich media to establish the virucidal efficacy and the effect biologically-relevant material may play in viral susceptibility. Antiviral activity was successfully demonstrated with a 4 Log10 (99.99%) reduction in infectivity when suspended in minimal media evident after a dose of 2.8 kJ cm−2. FCV exposed in artificial faeces, artificial saliva, blood plasma and other organically rich media exhibited an equivalent level of inactivation using between 50–85% less dose of the light, indicating enhanced inactivation when the virus is present in organically-rich biologically-relevant media. Further research in this area could aid in the development of 405 nm light technology for effective NoV decontamination within the hospital environment

    Photoinactivation of bacteria attached to glass and acrylic surfaces by 405nm light : potential application for biofilm decontamination

    Get PDF
    Attachment of bacteria to surfaces and subsequent biofilm formation remains a major cause of cross-contamination capable of inducing both food-related illness and nosocomial infections. Resistance to many current disinfection technologies means facilitating their removal is often difficult. The aim of this study was to investigate the efficacy of 405 nm light for inactivation of bacterial attached as biofilms to glass and acrylic. Escherichia coli biofilms (103–108 CFU mL1) were generated on glass and acrylic surfaces and exposed for increasing times to 405 nm light (5–60 min) at ca 140 mW cm2. Successful inactivation of biofilms has been demonstrated, with results highlighting complete/near-complete inactivation (up to 5 log10 reduction on acrylic and 7 log10 on glass). Results also highlight that inactivation of bacterial biofilms could be achieved whether the biofilm was on the upper “directly exposed” surface or “indirectly exposed” underside surface. Statistically significant inactivation was also shown with a range of other microorganisms associated with biofilm formation (Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes). Results from this study have demonstrated significant inactivation of bacteria ranging from monolayers to densely populated biofilms using 405 nm light, highlighting that with further development this technology may have potential applications for biofilm decontamination in food and clinical settings

    Complementary Lenses: Using Theories of Situativity and Complexity to Understand Collaborative Learning as Systems-Level Social Activity

    Get PDF
    This article highlights possibilities for understanding challenges related to collaborative learning by bringing two complementary lenses into theoretical and empirical conversation—complexity and situativity. After presenting a theoretical comparison that characterizes complementarity between complexity and situativity in order to frame their relative contributions to a systems-level understanding of learning processes, we examine persistently unproductive social activity during a 14-session, collaborative engineering design project in a fifth-grade peer group from both perspectives. We do so in order to demonstrate the value of these complementary perspectives for understanding collaborative learning processes and to suggest different explanations of why unproductive social activity sometimes persists and possibilities for interrupting such dynamics. We thus suggest a shift from explanatory accounts of system processes to prospective processes for systems of action within social ecologies of change. Such a framework can resolve the social activity of collaborative learning around a systems-level orientation

    Enhanced decontamination of C. difficile spores on surfaces via the synergistic action of 405nm light and disinfectants

    Get PDF
    The ability of C. difficile to form spores which can survive for prolonged periods causes significant environmental contamination problems. 405nm light has wide antimicrobial activity against vegetative bacteria, and is being developed for environmental decontamination within hospitals. As expected, spores are more resilient to inactivation. This study aims to establish whether spore susceptibility can be enhanced by combining 405nm light with low concentration chlorinated disinfectants: sodium hypochlorite, Actichlor and Tristel. Spore suspensions were seeded onto surfaces including PVC, stainless steel and vinyl flooring. Disinfectant was added to the surface, and the samples were then exposed to 405nm light at irradiances of ~0.2-225 mWcm-2. Control samples were exposed to 405nm light alone, and disinfectants alone, to establish the sporicidal activity of each agent, and to demonstrate the synergistic effect when combined. Results demonstrated increased sporicidal activity of 405nm light and low-concentration sodium hypochlorite and Actichlor against C. difficile seeded on vinyl flooring and PVC surfaces, with approximately 3-log10 reductions achieved with up to 66% lower doses than achieved with light alone. Tristel demonstrated limited synergy on vinyl and PVC, whilst all three disinfectants demonstrated minimal synergy on stainless steel. Results are also reported for lower intensity light, as used in the clinical environment. In conclusion, the sporicidal efficacy of 405nm light is enhanced when used alongside chlorinated disinfectants. Further research could potentially lead to the use of lower strength chlorinated disinfectants in combination with 405nm light to provide enhanced decontamination of C. difficile spores in the clinical environment

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    Airborne bacterial dispersal during and after dressing and bed changes on burns patients

    Get PDF
    It is acknowledged that activities such as dressing changes and bed sheet changes are high-risk events; creating surges in levels of airborne bacteria. Burns patients are particularly high dispersers of pathogens; due to their large, often contaminated, wound areas. Prevention of nosocomial cross-contamination is therefore one of the major challenges faced by the burns team. In order to assess the contribution of airborne spread of bacteria, air samples were taken repeatedly throughout and following these events, to quantify levels of airborne bacteria. Air samples were taken at 3-min intervals before, during and after a dressing and bed change on a burns patient using a sieve impaction method. Following incubation, bacterial colonies were enumerated to calculate bacterial colony forming units per m3 (cfu/m3) at each time point. Statistical analysis was performed, whereby the period before the high-risk event took place acted as a control period. The periods during and after the dressing and bed sheet changes were examined for significant differences in airborne bacterial levels relative to the control period. The study was carried out four times, on three patients with burns between 35% total burn surface area (TBSA) and 51% TBSA. There were significant increases in airborne bacteria levels, regardless of whether the dressing change or bed sheet change took place first. Of particular note, is the finding that significantly high levels (up to 2614 cfu/m3) of airborne bacteria were shown to persist for up to approximately 1 h after these activities ended. This is the most accurate picture to date of the rapidly changing levels of airborne bacteria within the room of a burns patient undergoing a dressing change and bed change. The novel demonstration of a significant increase in the airborne bacterial load during these events has implications for infection control on burns units. Furthermore, as these increased levels remained for approximately 1 h afterwards, persons entering the room both during and after such events may act as vectors of transmission of infection. It is suggested that appropriate personal protective equipment should be worn by anyone entering the room, and that rooms should be quarantined for a period of time following these events
    corecore