43 research outputs found
Freund's vaccine adjuvant promotes Her2/Neu breast cancer
<p>Abstract</p> <p>Background</p> <p>Inflammation has been linked to the etiology of many organ-specific cancers. Indirect evidence suggests a possible role for inflammation in breast cancer. We investigated whether the systemic inflammation induced by Freund's adjuvant (FA) promotes mammary carcinogenesis in a rat model in which cancer is induced by the <it>neu </it>oncogene.</p> <p>Methods</p> <p>The effects of FA on hyperplastic mammary lesions and mammary carcinomas were determined in a <it>neu</it>-induced rat model. The inflammatory response to FA treatment was gauged by measuring acute phase serum haptoglobin. In addition, changes in cell proliferation and apoptosis following FA treatment were assessed.</p> <p>Results</p> <p>Rats receiving FA developed twice the number of mammary carcinomas as controls. Systemic inflammation following FA treatment is chronic, as shown by a doubling of the levels of the serum biomarker, haptoglobin, 15 days following initial treatment. We also show that this systemic inflammation is associated with the increased growth of hyperplastic mammary lesions. This increased growth results from a higher rate of cellular proliferation in the absence of changes in apoptosis.</p> <p>Conclusion</p> <p>Our data suggests that systemic inflammation induced by Freund's adjuvant (FA) promotes mammary carcinogenesis. It will be important to determine whether adjuvants currently used in human vaccines also promote breast cancer.</p
Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity.
Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens
Withaferin a-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak. © 2011 Hahm et al
Amelioration of sexual adverse effects in the early breast cancer patient
As the number of breast cancer survivors increases, the long term consequences of breast cancer treatment are gaining attention. Sexual dysfunction is a common complaint amongst breast cancer survivors, and there are few evidence based recommendations and even fewer well designed clinical trials to establish what treatments are safe or effective in this patient population.
We conducted a PubMed search for articles published between 1995–2009 containing the terms breast cancer, sexual dysfunction, libido, vaginal dryness, testosterone, and vaginal estrogen. We initially reviewed articles focusing exclusively on sexual issues in breast cancer patients. Given the paucity of clinical trials addressing sexual issues in breast cancer patients, we also included studies evaluating both hormone and non-hormone based interventions for sexual dysfunction in post-menopausal women in general.
Among breast cancer survivors, vaginal dryness and loss of libido represent some of the most challenging long term side effects of breast cancer treatment. In the general post-menopausal population, topical preparations of estrogens and testosterone both appear to improve sexual function; however there are conflicting reports about the efficacy and safety of these interventions in women with a history of breast cancer, and further research is warranted
Cinnamoyl- Oxaborole Amides: Synthesis and Their in Vitro Biological Activity
Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to \u3e125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens
Cinnamoyl- Oxaborole Amides: Synthesis and Their in Vitro Biological Activity
Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to \u3e125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens