2,284 research outputs found
The Role of Non-native Interactions in the Folding of Knotted Proteins
Stochastic simulations of coarse-grained protein models are used to
investigate the propensity to form knots in early stages of protein folding.
The study is carried out comparatively for two homologous
carbamoyltransferases, a natively-knotted N-acetylornithine
carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase
(OTCase). In addition, two different sets of pairwise amino acid interactions
are considered: one promoting exclusively native interactions, and the other
additionally including non-native quasi-chemical and electrostatic
interactions. With the former model neither protein show a propensity to form
knots. With the additional non-native interactions, knotting propensity remains
negligible for the natively-unknotted OTCase while for AOTCase it is much
enhanced. Analysis of the trajectories suggests that the different entanglement
of the two transcarbamylases follows from the tendency of the C-terminal to
point away from (for OTCase) or approach and eventually thread (for AOTCase)
other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair
clarifies that natively-knotted proteins can spontaneously knot during early
folding stages and that non-native sequence-dependent interactions are
important for promoting and disfavoring early knotting events.Comment: Accepted for publication on PLOS Computational Biolog
Folding Pathways of a Knotted Protein with a Realistic Atomistic Force Field
We report on atomistic simulation of the folding of a natively-knotted protein, MJ0366, based on a realistic force field. To the best of our knowledge this is the first reported effort where a realistic force field is used to investigate the folding pathways of a protein with complex native topology. By using the dominant-reaction pathway scheme we collected about 30 successful folding trajectories for the 82-amino acid long trefoil-knotted protein. Despite the dissimilarity of their initial unfolded configuration, these trajectories reach the natively-knotted state through a remarkably similar succession of steps. In particular it is found that knotting occurs essentially through a threading mechanism, involving the passage of the C-terminal through an open region created by the formation of the native -sheet at an earlier stage. The dominance of the knotting by threading mechanism is not observed in MJ0366 folding simulations using simplified, native-centric models. This points to a previously underappreciated role of concerted amino acid interactions, including non-native ones, in aiding the appropriate order of contact formation to achieve knotting
Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary
Let (M,g) be a smooth compact, n dimensional Riemannian manifold, n=3,4 with
smooth n-1 dimensional boundary. We search the positive solutions of the
singularly perturbed Klein Gordon Maxwell Proca system with homogeneous Neumann
boundary conditions or for the singularly perturbed Klein Gordon Maxwell system
with mixed Dirichlet Neumann homogeneous boundary conditions. We prove that
stable critical points of the mean curvature of the boundary generates
solutions when the perturbation parameter is sufficiently small.Comment: arXiv admin note: text overlap with arXiv:1410.884
Exact Solution of the Munoz-Eaton Model for Protein Folding
A transfer-matrix formalism is introduced to evaluate exactly the partition
function of the Munoz-Eaton model, relating the folding kinetics of proteins of
known structure to their thermodynamics and topology. This technique can be
used for a generic protein, for any choice of the energy and entropy
parameters, and in principle allows the model to be used as a first tool to
characterize the dynamics of a protein of known native state and equilibrium
population. Applications to a -hairpin and to protein CI-2, with
comparisons to previous results, are also shown.Comment: 4 pages, 5 figures, RevTeX 4. To be published in Phys. Rev. Let
Conformations of Proteins in Equilibrium
We introduce a simple theoretical approach for an equilibrium study of
proteins with known native state structures. We test our approach with results
on well-studied globular proteins, Chymotrypsin Inhibitor (2ci2), Barnase and
the alpha spectrin SH3 domain and present evidence for a hierarchical onset of
order on lowering the temperature with significant organization at the local
level even at high temperatures. A further application to the folding process
of HIV-1 protease shows that the model can be reliably used to identify key
folding sites that are responsible for the development of drug resistance .Comment: 6 pages, 3 eps figure
Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties
Advanced Monte Carlo simulations are used to study the effect of nano-slit
confinement on metric and topological properties of model DNA chains. We
consider both linear and circularised chains with contour lengths in the
1.2--4.8 m range and slits widths spanning continuously the 50--1250nm
range. The metric scaling predicted by de Gennes' blob model is shown to hold
for both linear and circularised DNA up to the strongest levels of confinement.
More notably, the topological properties of the circularised DNA molecules have
two major differences compared to three-dimensional confinement. First, the
overall knotting probability is non-monotonic for increasing confinement and
can be largely enhanced or suppressed compared to the bulk case by simply
varying the slit width. Secondly, the knot population consists of knots that
are far simpler than for three-dimensional confinement. The results suggest
that nano-slits could be used in nano-fluidic setups to produce DNA rings
having simple topologies (including the unknot) or to separate heterogeneous
ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
Inferring the effective thickness of polyelectrolytes from stretching measurements at various ionic strengths: applications to DNA and RNA
By resorting to the thick-chain model we discuss how the stretching response
of a polymer is influenced by the self-avoidance entailed by its finite
thickness. The characterization of the force versus extension curve for a thick
chain is carried out through extensive stochastic simulations. The
computational results are captured by an analytic expression that is used to
fit experimental stretching measurements carried out on DNA and single-stranded
RNA (poly-U) in various solutions. This strategy allows us to infer the
apparent diameter of two biologically-relevant polyelectrolytes, namely DNA and
poly-U, for different ionic strengths. Due to the very different degree of
flexibility of the two molecules, the results provide insight into how the
apparent diameter is influenced by the interplay between the
(solution-dependent) Debye screening length and the polymers' ``bare''
thickness. For DNA, the electrostatic contribution to the effective radius,
, is found to be about 5 times larger than the Debye screening length,
consistently with previous theoretical predictions for highly-charged stiff
rods. For the more flexible poly-U chains the electrostatic contribution to
is found to be significantly smaller than the Debye screening length.Comment: iopart, 14 pages, 13 figures, to appear in J. Phys.: Condens. Matte
Influence of conformational fluctuations on enzymatic activity: modelling the functional motion of beta-secretase
Considerable insight into the functional activity of proteins and enzymes can
be obtained by studying the low-energy conformational distortions that the
biopolymer can sustain. We carry out the characterization of these large scale
structural changes for a protein of considerable pharmaceutical interest, the
human -secretase. Starting from the crystallographic structure of the
protein, we use the recently introduced beta-Gaussian model to identify, with
negligible computational expenditure, the most significant distortion occurring
in thermal equilibrium and the associated time scales. The application of this
strategy allows to gain considerable insight into the putative functional
movements and, furthermore, helps to identify a handful of key regions in the
protein which have an important mechanical influence on the enzymatic activity
despite being spatially distant from the active site. The results obtained
within the Gaussian model are validated through an extensive comparison against
an all-atom Molecular Dynamics simulation.Comment: To be published in a special issue of J. Phys.: Cond. Mat. (Bedlewo
Workshop
- …