16 research outputs found

    High-Resolution 3D Fabrication of Glass Fiber-Reinforced Polymer Nanocomposite (FRPN) Objects by Two-Photon Direct Laser Writing

    Get PDF
    This paper reports on the nanofabrication of a fiber-reinforced polymer nanocomposite (FRPN) by two-photon direct laser writing (TP-DLW) using silica nanowires (SiO2 NWs) as nanofillers, since they feature a refractive index very close to that of the photoresist used as a polymeric matrix. This allows for the best resolution offered by the TP-DLW technique, even with high loads of SiO2 NWs, up to 70 wt %. The FRPN presented an increase of approximately 4 times in Young's modulus (8.23 GPa) and nanohardness (120 MPa) when compared to those of the bare photoresist, indicating how the proposed technique is well-suited for applications with higher structural requirements. Moreover, three different printing configurations can be implemented thanks to the use of silicon chips, on which the SiO2 NWs are grown, as fabrication substrates. First, they can be effectively used as an adhesive layer when the laser beam is focused at the interface with the silicon substrate. Second, they can be used as a sacrificial layer, when the laser beam is focused in a plane inside the SiO2 NW layer. Third, only the outer shell of the object is printed so that the SiO2 NW tangle acts as the internal skeleton for the structure being fabricated in the so-called shell and scaffold printing strategy

    Additive Manufacturing of Gold Nanostructures Using Nonlinear Photoreduction under Controlled Ionic Diffusion

    Get PDF
    Multiphoton photoreduction of photosensitive metallic precursors via direct laser writing (DLW) is a promising technique for the synthesis of metallic structures onto solid substrates at the sub-micron scale. DLW triggered by a two photon absorption process is done using a femtosecond NIR laser (lambda = 780 nm), tetrachloroauric acid (HAuCl4) as a gold precursor, and isinglass as a natural hydrogel matrix. The presence of a polymeric, transparent matrix avoids unwanted diffusive processes acting as a network for the metallic nanoparticles. After the writing process, a bath in deionized water removes the gold precursor ions and eliminates the polymer matrix. Different aspects underlying the growth of the gold nanostructures (AuNSs) are here investigated to achieve full control on the size and density of the AuNSs. Writing parameters (laser power, exposure time, and scanning speed) are optimized to control the patterns and the AuNSs size. The influence of a second bath containing Au3+ to further control the size and density of the AuNSs is also investigated, observing that these AuNSs are composed of individual gold nanoparticles (AuNPs) that grow individually. A fine-tuning of these parameters leads to an important improvement of the created structures' quality, with a fine control on size and density of AuNSs.W.D.C. and M.G. acknowledge the support of the CNR Facility Beyond-Nano-Polo di Cosenza. W.D.C. acknowledges MIUR (Ministero dell'Istruzione, dell'Universita e della Ricerca-Italy) for her industrial PhD grant (PONa3_00362). This work was also funded by Ministry of Science, Innovation and Universities (project TEC2017-86102-C2-2-R) and Junta de Andalucia (Research group INNANOMAT, ref. TEP-946). Co-funding from UE is also acknowledged. A.S.d.L. and M.d.l.M. acknowledge Ministry of Science, Innovation and Universities for their Juan de la Cierva Incorporacion postdoctoral fellowships (IJC2019-041128-I, IJCI-2017-31507). SEM and TEM measurements were carried out at the DME-SC-ICyT-ELECMI-UCA. Documen

    Polymer nanocomposites for plasmonics: In situ synthesis of gold nanoparticles after additive manufacturing

    Get PDF
    A series of nanocomposites containing gold nanoparticles (AuNPs) are prepared by stereolithography (SL) by simply adding a precursor (KAuCl4) to a photoresist. A thermal treatment is performed after manufacturing the nanocomposites, triggering the reduction of KAuCl4 into AuNPs in solid state. In this approach, the photopolymerization of the resin and the formation of the AuNPs occur independently, allowing the optimization of these two processes separately. Advanced electron microscopy analyses reveal the distribution, size and morphology of the AuNPs synthesized within the resin, showing the influence of the gold precursor concentration and different thermal treatments. The localized surface plasmon resonance (LSPR) of the AuNPs modifies the optical properties of the 3D-printed nanocomposites, yielding transparent yet colored materials even for concentrations as low as 0.1 wt% KAuCl4. This behavior can be modelled by the Mie theory, correlating the macroscopic properties of the nanocomposites with the individual AuNPs embedded in the resin. The possibility of tuning the LSPR of the AuNPs together with the ability of manufacturing 3D-structures with sub-millimeter precision by SL, paves the way for the design of advanced platforms for plasmonics, such as sensors for surface enhanced Raman spectroscopy9 página

    Proprieta' di superficie dei cristalli liquidi nematici

    No full text
    Dottorato di ricerca in fisica. 8. ciclo. Supervisori R. Bartolino e R. Barbieri. Coordinatore E. ColavitaConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Controlling Chaos With Parametric Perturbations

    No full text
    Introduction In 1965, an interesting paper appeared where Wehrmann [1965] was able to suppress turbulence behind a cylinder in a moving fluid. The basic idea was to put in vibration the cylinder with a suitable feed-back using the same fluctuations present in the turbulent fluid. A complete laminarization was obtained. Turbulence is a phenomena related to a system with infinite degrees of freedom and it is natural to wonder if parametric perturbations can modify the onset of chaos in low dimensional system as well. In 1990, Lima and Pettini [1990] showed with rigorous theoretical consideration that resonant parametric perturbation can remove chaos in low dimensional systems. They confirmed this prediction with numerical simulation. Furthermore, Cicogna [1990] showed, using a Melnikov Integral [Melnikov, 1963], how to modify the threshold of chaos by resonant parametric modulation. Considering that these works were essentially of theoretical nature, it was particularly interes

    Atomic force microscopy study of physico-chemical and nanotribological properties of hydrophobin protein

    No full text
    Dottorato di Ricerca in “Scienze e Tecnologie delle Mesofasi e dei Materiali Molecolari, XXII Ciclo a.a. 2010Università della Calabri
    corecore