5,792 research outputs found

    EDACs and test integration strategies for NAND flash memories

    Get PDF
    Mission-critical applications usually presents several critical issues: the required level of dependability of the whole mission always implies to address different and contrasting dimensions and to evaluate the tradeoffs among them. A mass-memory device is always needed in all mission-critical applications: NAND flash-memories could be used for this goal. Error Detection And Correction (EDAC) techniques are needed to improve dependability of flash-memory devices. However also testing strategies need to be explored in order to provide highly dependable systems. Integrating these two main aspects results in providing a fault-tolerant mass-memory device, but no systematic approach has so far been proposed to consider them as a whole. As a consequence a novel strategy integrating a particular code-based design environment with newly selected testing strategies is presented in this pape

    Identification of candidate regulatory sequences in mammalian 3' UTRs by statistical analysis of oligonucleotide distributions

    Get PDF
    3' untranslated regions (3' UTRs) contain binding sites for many regulatory elements, and in particular for microRNAs (miRNAs). The importance of miRNA-mediated post-transcriptional regulation has become increasingly clear in the last few years. We propose two complementary approaches to the statistical analysis of oligonucleotide frequencies in mammalian 3' UTRs aimed at the identification of candidate binding sites for regulatory elements. The first method is based on the identification of sets of genes characterized by evolutionarily conserved overrepresentation of an oligonucleotide. The second method is based on the identification of oligonucleotides showing statistically significant strand asymmetry in their distribution in 3' UTRs. Both methods are able to identify many previously known binding sites located in 3'UTRs, and in particular seed regions of known miRNAs. Many new candidates are proposed for experimental verification.Comment: Added two reference

    FLARE: A design environment for FLASH-based space applications

    Get PDF
    Designing a mass-memory device (i.e., a solid-state recorder) is one of the typical issues of mission-critical space system applications. Flash-memories could be used for this goal: a huge number of parameters and trade-offs need to be explored. Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawback: e.g., their cost is higher than normal hard disk and the number of erasure cycles is bounded. Moreover space environment presents various issues especially because of radiations: different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid-state recorder. No systematic approach has so far been proposed to consider them all as a whole: as a consequence a novel design environment currently under development is aimed at supporting the design of flash-based mass-memory device for space application

    Flash-memories in Space Applications: Trends and Challenges

    Get PDF
    Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space application

    Exploring Design Dimensions in Flash-based Mass-memory Devices

    Get PDF
    Mission-critical space system applications present several issues: a typical one is the design of a mass-memory device (i.e., a solid- state recorder). This goal could be accomplished by using flash- memories: the exploration of a huge number of parameters and trade-offs is needed. On the one hand flash-memories are nonvolatile, shock-resistant and power-economic, but on the other hand their cost is higher than normal hard disk, the number of erasure cycles is bounded and other different drawbacks have to be considered. In addition space environment presents various issues especially because of radiations: the design of a flash- memory based solid-state recorder implies the exploration of different and quite often contrasting dimensions. No systematic approach has so far been proposed to consider them all as a whole: as a consequence the design of flash-based mass-memory device for space applications is intended to be supported by a novel design environment currently under development and refinemen

    Design Issues and Challenges of File Systems for Flash Memories

    Get PDF
    This chapter discusses how to properly address the issues of using NAND flash memories as mass-memory devices from the native file system standpoint. We hope that the ideas and the solutions proposed in this chapter will be a valuable starting point for designers of NAND flash-based mass-memory devices

    Computational identification of transcription factor binding sites by functional analysis of sets of genes sharing overrepresented upstream motifs

    Get PDF
    BACKGROUND: Transcriptional regulation is a key mechanism in the functioning of the cell, and is mostly effected through transcription factors binding to specific recognition motifs located upstream of the coding region of the regulated gene. The computational identification of such motifs is made easier by the fact that they often appear several times in the upstream region of the regulated genes, so that the number of occurrences of relevant motifs is often significantly larger than expected by pure chance. RESULTS: To exploit this fact, we construct sets of genes characterized by the statistical overrepresentation of a certain motif in their upstream regions. Then we study the functional characterization of these sets by analyzing their annotation to Gene Ontology terms. For the sets showing a statistically significant specific functional characterization, we conjecture that the upstream motif characterizing the set is a binding site for a transcription factor involved in the regulation of the genes in the set. CONCLUSIONS: The method we propose is able to identify many known binding sites in S. cerevisiae and new candidate targets of regulation by known transcription factors. Its application to less well studied organisms is likely to be valuable in the exploration of their regulatory interaction network.Comment: 19 pages, 1 figure. Published version with several improvements. Supplementary material available from the author

    MASW Terra-Mare, applicazione a Taranto per il Progetto Beleolico

    Get PDF
    Per una caratterizzazione sismica del sottosuolo presso la spiaggia dell’insediamento residenziale di "Lido Azzurro” (TA), area interessata alla realizzazione di un parco eolico “near-shore”, l'IAMC ha effettuato uno stendimento sismico del tipo terra-mare con metodologia MASW per la determinazione del profilo verticale delle onde di taglio e del valore Vs30, in riferimento tra l’altro alla classificazione dei terreni di fondazione degli interventi in progetto nelle categorie di suolo, come da paragrafo 3.2.2 delle N.T.C. 2008 “D.M. 14/01/2008”

    Multi-objective design of a power inductor: a benchmark of inverse induction heating

    Get PDF
    In the paper, a bi-objective optimization problem characterized by coupled field analysis is investigated. The optimal design of a pancake inductor for the controlled heating of a graphite disk is considered as the benchmark problem. The Pareto front trading off electrical efficiency and thermal uniformity is identified by means of a standard algorithm of evolutionary computing. A mesh-inspired definition of thermal uniformity is proposed
    corecore