30 research outputs found

    Mechanisms of Zika virus infection and neuropathogenesis

    Get PDF
    A spotlight has been focused on the mosquito-borne Zika virus (ZIKV) because of its epidemic outbreak in Brazil and Latin America, as well as the severe neurological manifestations of microcephaly and Guillain–Barré syndrome associated with infection. In this review, we discuss the recent literature on ZIKV-host interactions, including new mechanistic insight concerning the basis of ZIKV-induced neuropathogenesis

    The recruitment and activation of phosphatidylinositol 4-phosphate 5-kinases α critically regulate CD28-dependent signaling responses

    Get PDF
    CD28 costimulatory receptor is a crucial determinant of the outcome of T lymphocyte activation. The engagement of CD28 by its natural ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional APC, lowers T cell receptor (TCR) activation threshold, thus leading to the enhancement of early signalling events necessary for efficient cytokine production, cell cycle progression, survival and regulation of T cells effector responses. CD28 is also able to act as a unique signalling receptor and to deliver TCR-independent autonomous signals, which account for its critical role in the regulation of pro-inflammatory cytokine/chemokine production and T cell survival. Most of the CD28-dependent signalling functions are initiated by the recruitment and activation of class IA phosphatidylinositol 3-kinase (PI3K), The intracytoplasmic domain of CD28 contains a N-terminal YMNM motif that following phosphorylation binds the p85 subunit of phosphatidylinositol 3-kinase (PI3K). Once activated, PI3K catalyzes the conversion of phosphatidylinositol 4,5-biphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3) and generates the docking sites for key signalling proteins. PIP2 plays a critical role in the regulation of both cytoskeleton dynamics and second messenger generation. Indeed, PIP2 is the common source for two major distinct signalling cascades involving PI3K and PLCγ1 that often colocalize in the same signalling complexes competing for the common pool of substrate. Consequently, PIP2 levels decrease following receptor activation, thus suggesting that stimulation of PIP2 synthesis may be an essential regulatory step to sustain the activation of both PI3K and PLCγ1 following CD28 engagement. The main biosynthetic pathway of PIP2 involves phosphorylation of phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring by PIP5K. Three PIP5K isoforms (α, β and γ) have been identified. Several data obtained in different cell systems evidenced differential subcellular localizations of each isoform. PIP5Kα, for instance, is localized at the plasma membrane, where it guarantees the local availability of PIP2. Here we show that CD28 stimulation by both B7.1/CD80 or agonistic Abs induces the recruitment and activation of PIP5Kα in human primary CD4+ T lymphocytes. This event leads to the neo-synthesis of PIP2 that is consumed by CD28-activated PI3K. By either small interference RNA (siRNA)-driven cell silencing or overexpressing a kinase dead mutant, we evidenced that PIP5Kα activation is required for both CD28 autonomous signals regulating IL-8 gene expression as well as for CD28/TCR-induced Ca2+ mobilization, NF-AT nuclear translocation and IL-2 gene transcription. Our findings identify PIP5Kα as a critical mediator of CD28-dependent responses

    RelA/NF-kappaB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells

    Get PDF
    The balance between antiapoptotic and proapoptotic proteins of the Bcl-2 family is critical in determining the fate of T cells in response to death stimuli. Proapoptotic genes, such as bax, are generally regulated by the p53 family of transcription factors, whereas NF-kappaB subunits can activate the transcription of antiapoptotic Bcl-2 members. Here, we show that CD28 activation protects memory T cells from irradiation-induced apoptosis by both upregulating bcl-xL and inhibiting bax gene expression. We found that p73, but not p53, binds to and trans-activates the bax gene promoter in irradiated T cells. The activation of RelA/NF-kappaB subunit in CD28 costimulated T cells and its binding onto the bax gene promoter results in suppression of bax transcription and decrease in both p73 and RNA polymerase II recruitment in vivo. RelA recruitment on the bax gene promoter is also accompanied by the lost of p300 binding and the parallel appearance of histone deacetylase-1-containing complexes. These findings identify RelA/NF-kappaB as a critical regulator of T-cell survival by affecting the balance of Bcl-2 family members

    Virus-like particle – mediated delivery of the RIG-I agonist M8 induces a type I interferon response and protects cells against viral infection

    Get PDF
    Virus-Like Particles (VLPs) are nanostructures that share conformation and self-assembly properties with viruses, but lack a viral genome and therefore the infectious capacity. In this study, we produced VLPs by co-expression of VSV glycoprotein (VSV-G) and HIV structural proteins (Gag, Pol) that incorporated a strong sequence-optimized 5’ppp-RNA RIG-I agonist, termed M8. Treatment of target cells with VLPs-M8 generated an antiviral state that conferred resistance against multiple viruses. Interestingly, treatment with VLPs-M8 also elicited a therapeutic effect by inhibiting ongoing viral replication in previously infected cells. Finally, the expression of SARS-CoV-2 Spike glycoprotein on the VLP surface retargeted VLPs to ACE2 expressing cells, thus selectively blocking viral infection in permissive cells. These results highlight the potential of VLPs-M8 as a therapeutic and prophylactic vaccine platform. Overall, these observations indicate that the modification of VLP surface glycoproteins and the incorporation of nucleic acids or therapeutic drugs, will permit modulation of particle tropism, direct specific innate and adaptive immune responses in target tissues, and boost immunogenicity while minimizing off-target effects

    A non-conserved amino acid variant regulates differential signalling between human and mouse CD28

    Get PDF
    CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside

    Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways

    Get PDF
    The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p

    Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways

    Get PDF
    The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p

    Oncolytic Immunotherapy: Can't Start a Fire Without a Spark

    No full text
    Recent advances in cancer immunotherapy have renewed interest in oncolytic viruses (OVs) as a synergistic platform for the development of novel antitumor strategies. Cancer cells adopt multiple mechanisms to evade and suppress antitumor immune responses, essentially establishing a non-immunogenic ('cold') tumor microenvironment (TME), with poor T-cell infiltration and low mutational burden. Limitations to the efficacy of immunotherapy still exist, especially for a variety of solid tumors, where new approaches are necessary to overcome physical barriers in the TME and to mitigate adverse effects associated with current immunotherapeutics. OVs offer an attractive alternative by inducing direct oncolysis, immunogenic cell death, and immune stimulation. These multimodal mechanisms make OVs well suited to reprogram non-immunogenic tumors and TME into inflamed, immunogenic ('hot') tumors; enhanced release of tumor antigens by dying cancer cells is expected to augment T-cell infiltration, thereby eliciting potent antitumor immunity. Advances in virus engineering and understanding of tumor biology have allowed the optimization of OV-tumor selectivity, oncolytic potency, and immune stimulation. However, OV antitumor activity is likely to achieve its greatest potential as part of combinatorial strategies with other immune or cancer therapeutics

    A Genome-Wide CRISPR-Cas9 Loss-of-Function Screening to Identify Host Restriction Factors Modulating Oncolytic Virotherapy

    No full text
    Oncolytic virotherapy represents an efficient immunotherapeutic approach for cancer treatment. Oncolytic viruses (OVs) promote antitumor responses through tumor-selective cell lysis and immune system activation. However, some tumor cell lines and primary tumors display resistance to therapy. Here we describe a protocol to identify novel host factors responsible for tumor resistance to oncolysis using an unbiased genome-wide CRISPR-Cas9 loss-of-function screening. Cas9-expressing tumor cells are transduced with a library of pooled single-guide RNA (sgRNA)-expressing lentiviruses that target all human genes to obtain a cell population where each cell is knocked out for a single gene. Upon OV infection, resistant cells survive, while sensitive cells die. The relative abundance of each genome-integrated sgRNA is measured by next-generation sequencing (NGS) in resistant and control cells. This protocol is amenable to uncover host factors involved in the resistance to different OVs in multiple tumor models

    A novel association between filamin A and NF-κB inducing kinase couples CD28 to inhibitor of NF-κB kinase α and NF-κB activation

    No full text
    CD28 costimulatory molecule plays a critical role in the activation of NF-κB. Indeed, while stimulation of T cells with either professional APCs or anti-TCR plus anti-CD28 antibodies efficiently activates NF-κB, TCR alone fails to do that. Moreover, CD28 stimulation by B7 in the absence of TCR may activate IκB kinase α (IKKα) and a non-canonical NF-κB2-like pathway, in human primary CD4+ T cells. Despite its functional relevance in NF-κB activation, the molecules connecting autonomous CD28-mediated signals to IKKα and NF-κB activation remain still unknown. In searching for specific upstream activators linking CD28 to the IKKα/NF-κB cascade, we identify a novel constitutive association between filamin A (FLNa) and the NF-κB inducing kinase (NIK), in both Jurkat and human primary T cells. Following CD28 engagement by B7, in the absence of TCR, FLNa-associated NIK is activated and induces IKKα kinase activity. Both proline (P208YAP211P212) and tyrosine residues (Y206QPY209APP) within the C-terminal proline-rich motif of CD28 are involved in the recruitment of FLNa/NIK complexes to the membrane as well as in the activation of NIK and IKKα. © 2011 Elsevier B.V
    corecore