24 research outputs found
Collagen-induced arthritis in common marmosets: a new nonhuman primate model for chronic arthritis
Introduction: There is an ever-increasing need for animal models to evaluate efficacy and safety of new therapeutics in the field of rheumatoid arthritis (RA). Particularly for the early preclinical evaluation of human-specific biologicals targeting the progressive phase of the disease, there is a need for relevant animal models. In response to this requirement we set out to develop a model of collagen-induced arthritis (CIA) in a small-sized nonhuman primate species (300 to 400 g at adult age); that is, the common marmoset (Callithrix jacchus).Methods: Twenty-two animals divided into three experiments were immunized with collagen type II (CII) of either bovine or chicken origin with different immunization strategies. The animals were analyzed for clinical manifestation of arthritis, hematology and clinical chemistry, immunological responses against CII and histopathological features of the arthritis.Results: Clinically manifest arthritis was observed in almost 100% (21 out of 22) of the animals. Fifty percent of the animals developed semi-acute CIA while the other 50% displayed a more chronic disease. Both cellular (CD3/CD4 and CD3/CD8) and humoral responses (IgM and IgG) against CII were involved in the development of the disease. Besides mild histopathological changes in bone and cartilage, severe inflammation in extraarticular tissues like periosteum and subcutaneous tissues was observed.Conclusions: This new model in marmosets more closely resembles chronic RA with respect to the chronic disease course and pathomorphological presentation than the more acute monophasic and destructive CIA model in macaques. This model can therefore fill a niche in preclinical testing of new human specific therapeutics
The preclinical pharmacology of the high affinity anti-IL-6R Nanobody (R) ALX-0061 supports its clinical development in rheumatoid arthritis
Introduction: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody (R) with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. Methods: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. Results: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. Conclusions: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA
Type II collagen antibody response is enriched in the synovial fluid of rheumatoid joints and directed to the same major epitopes as in collagen induced arthritis in primates and mice
Introduction
Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA.
Methods
Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice.
Results
Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group.
Conclusion
CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation
Preclinical models of arthritic disease in non-human primates
The costs for the development of new drugs have increased dramatically over the past 30 years. One of the main reasons for this increase is the low success rate of new drugs being approved for patient use, which is, in part, a consequence of the common use of rodent models for preclinical validation of efficacy. Especially in the development of biologicals, which are now successfully used in the treatment of rheumatoid arthritis, the selection of the right animal model is pivotal. Non-human primates could help to bridge the evolutionary gap between rodent models and human patient