12 research outputs found

    Critical Oxygen Pressure for Growth and Respiration of Excised and Intact Roots

    No full text
    A method based on the measurement of ATP/ADP ratios is described. It permits the determination of the critical respiratory oxygen pressure of any organ, or part of any organ, of an intact plant. The data obtained by this method with intact maize (Zea mays L. INRA 508) root tips are compared with polarographic determinations on similar excised tissues. When internal O(2) transport from the aerial part was prevented, the critical oxygen pressure found for the respiration of intact tips was similar to that found with excised tips. It was close to 10 kilopascals in a humid atmosphere and about 30 kilopascals in a liquid medium. Flooding of the gas spaces by vacuum infiltration did not modify these results. When internal O(2) transport from the aerial parts of the plant occurred, significantly lower values were obtained in liquid medium for the critical oxygen pressure, which shifted from more than 21 to 6 kilopascals. The higher values observed with excised root tips, compared to those obtained with intact tissues, can be explained by the lack of internal O(2) transport, rather than by the flooding of gas spaces. Data are presented which show that root growth started to be limited at a significantly higher pressure than the respiration. These results are attributed to nonrespiratory oxidative processes with a low affinity for O(2) involved in root elongation

    Artefactual Origins of Cyclic AMP in Higher Plant Tissues

    No full text
    A highly sensitive radioimmunoassay has been used to determine the levels of adenosine 3â€Č,5â€Č-cyclic monophosphate (cAMP) in five higher plants (Lactuca sativa, Helianthus annuus, Oryza sativa, Pinus pinaster, Nicotiana tabacum). Particular attention was paid to the three main sources of errors in the characterization of cAMP in plants: presence of interfering substances in plant tissues; possible artefactual formation of cAMP from endogenous ATP during extraction, purification, and assay; and microbial origin of cAMP. In all the tested tissues, the cAMP level was below the detection limit of 0.5 picomole per gram fresh weight, a value much lower than those reported for similar materials of the same species in many previous studies. This result is not in favor of cAMP-dependent regulations in higher plants

    BDNF-Dependent Plasticity Induced by Peripheral Inflammation in the Primary Sensory and the Cingulate Cortex Triggers Cold Allodynia and Reveals a Major Role for Endogenous BDNF As a Tuner of the Affective Aspect of Pain

    No full text
    International audiencePainful experiences are multilayered, composed of sensory, affective, cognitive and behavioral facets. Whereas it is well accepted that the development of chronic pain is due to maladaptive neuronal changes, the underlying molecular mechanisms, their relationship to the different pain modalities, and indeed the localization of these changes are still unknown. Brain-derived neurotrophic factor (BDNF) is an activity-dependent neuromodulator in the adult brain, which enhances neuronal excitability. In the spinal cord, BDNF underlies the development and maintenance of inflammatory and neuropathic pain. Here, we hypothesized that BDNF could be a trigger of some of these plastic changes. Our results demonstrate that BDNF is upregulated in the anterior cingulate cortex (ACC) and the primary sensory cortex (S1) in rats with inflammatory pain. Injections of recombinant BDNF (into the ACC) or a viral vector synthesizing BDNF (into the ACC or S1) triggered both neuronal hyperexcitability, as shown by elevated long-term potentiation, and sustained pain hypersensitivity. Finally, pharmacological blockade of BDNF-tropomyosin receptor kinase B (TrkB) signaling in the ACC, through local injection of cyclotraxin-B (a novel, highly potent, and selective TrkB antagonist) prevented neuronal hyperexcitability, the emergence of cold hypersensitivity, and passive avoidance behavior. These findings show that BDNF-dependent neuronal plasticity in the ACC, a structure known to be involved in the affective-emotional aspect of pain, is a key mechanism in the development and maintenance of the emotional aspect of chronic pain

    Holographic laser Doppler imaging of microvascular blood flow

    Get PDF
    International audienceWe report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time-averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency-shifted reference beam, permits frequency-selective imaging in the radiofrequency range. These Doppler images are acquired with an off-axis Mach–Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse-method analysis of local first-order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1-10 mm/s range in vitro and imaging of superficial blood perfusion with a spatial resolution of about 10 micrometers in rodent models of cortical and retinal blood flow
    corecore