12 research outputs found
The ALPS project release 1.3: open source software for strongly correlated systems
We present release 1.3 of the ALPS (Algorithms and Libraries for Physics
Simulations) project, an international open source software project to develop
libraries and application programs for the simulation of strongly correlated
quantum lattice models such as quantum magnets, lattice bosons, and strongly
correlated fermion systems. Development is centered on common XML and binary
data formats, on libraries to simplify and speed up code development, and on
full-featured simulation programs. The programs enable non-experts to start
carrying out numerical simulations by providing basic implementations of the
important algorithms for quantum lattice models: classical and quantum Monte
Carlo (QMC) using non-local updates, extended ensemble simulations, exact and
full diagonalization (ED), as well as the density matrix renormalization group
(DMRG). Changes in the new release include a DMRG program for interacting
models, support for translation symmetries in the diagonalization programs, the
ability to define custom measurement operators, and support for inhomogeneous
systems, such as lattice models with traps. The software is available from our
web server at http://alps.comp-phys.org/
Strategies to Overcome Biological Barriers Associated with Pulmonary Drug Delivery
While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers
Development and Characterization of Treprostinil Palmitil Inhalation Aerosol for the Investigational Treatment of Pulmonary Arterial Hypertension
Treprostinil palmitil (TP) is a prodrug of treprostinil (TRE), a pulmonary vasodilator that has been previously formulated for inhaled administration via a nebulizer. TP demonstrates a sustained presence in the lungs with reduced systemic exposure and prolonged inhibition of hypoxia-induced pulmonary vasoconstriction in vivo. Here, we report on re-formulation efforts to develop a more convenient solution-based metered-dose inhaler (MDI) formulation of TP, a treprostinil palmitil inhalation aerosol (TPIA) that matches the pharmacokinetic (PK) and efficacy profile of a nebulized TP formulation, treprostinil palmitil inhalation suspension (TPIS). MDI canisters were manufactured using a two-stage filling method. Aerosol performance, formulation solubility, and chemical stability assays were utilized for in vitro evaluation. For in vivo studies, TPIA formulations were delivered to rodents using an inhalation tower modified for MDI delivery. Using an iterative process involving evaluation of formulation performance in vitro (TP and excipient solubility, chemical stability, physical stability, and aerosol properties) and confirmatory testing in vivo (rat PK and efficacy, guinea pig cough), a promising formulation was identified. The optimized formulation, TPIA-W, demonstrates uniform in vitro drug delivery, a PK profile suitable for a once-daily administration, efficacy lasting at least 12 h in a hypoxic challenge model, and a significantly higher cough threshold than the parent drug treprostinil