844 research outputs found

    Quantum limits of cold damping with optomechanical coupling

    Get PDF
    Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirrorComment: 10 pages, 3 figures, RevTe

    Validation d'une Ă©chelle d'Ă©valuation du leadership en milieu sportif

    Get PDF

    High-sensitivity optical monitoring of a micro-mechanical resonator with a quantum-limited optomechanical sensor

    Get PDF
    We experimentally demonstrate the high-sensitivity optical monitoring of a micro-mechanical resonator and its cooling by active control. Coating a low-loss mirror upon the resonator, we have built an optomechanical sensor based on a very high-finesse cavity (30000). We have measured the thermal noise of the resonator with a quantum-limited sensitivity at the 10^-19 m/rootHz level, and cooled the resonator down to 5K by a cold-damping technique. Applications of our setup range from quantum optics experiments to the experimental demonstration of the quantum ground state of a macroscopic mechanical resonator.Comment: 4 pages, 5 figure

    Mechanical loss in state-of-the-art amorphous optical coatings

    Full text link
    We present the results of mechanical characterizations of many different high-quality optical coatings made of ion-beam-sputtered titania-doped tantala and silica, developed originally for interferometric gravitational-wave detectors. Our data show that in multi-layer stacks (like high-reflection Bragg mirrors, for example) the measured coating dissipation is systematically higher than the expectation and is correlated with the stress condition in the sample. This has a particular relevance for the noise budget of current advanced gravitational-wave interferometers, and, more generally, for any experiment involving thermal-noise limited optical cavities.Comment: 31 pages, 14 figure

    A micropillar for cavity optomechanics

    Full text link
    We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-ÎĽ\mum diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry

    Material loss angles from direct measurements of broadband thermal noise

    No full text
    International audienceWe estimate the loss angles of the materials currently used in the highly reflective test-mass coatings of interferometric detectors of gravitational waves, namely Silica, Tantala, and Ti-doped Tantala, from direct measurement of coating thermal noise in an optical interferometer testbench, the Caltech TNI. We also present a simple predictive theory for the material properties of amorphous glassy oxide mixtures, which gives results in good agreement with our measurements on Ti-doped Tantala. Alternative measurement methods and results are reviewed, and some critical issues are discussed

    Correlated evolution of structure and mechanical loss of a sputtered silica film

    Full text link
    Energy dissipation in amorphous coatings severely affects high-precision optical and quantum transducers. In order to isolate the source of coating loss, we performed an extensive study of Raman scattering and mechanical loss of a thermally-treated sputtered silica coating. Our results show that loss is correlated with the population of three-membered rings of Si-O4_4 tetrahedral units, and support the evidence that thermal treatment reduces the density of metastable states separated by a characteristic energy of about 0.5 eV, in favour of an increase of the states separated by smaller activation energies. Finally, we conclude that three-fold rings are involved in the relaxation mechanisms only if they belong to more complex chain-like structures of 10 to 100 tetrahedra.Comment: 5 pages, 3 figure
    • …
    corecore