164 research outputs found

    Ontogenic appearance of Ca2+ channels characterized as binding sites for nitredipine during development of nervous, skeletal and cardiac muscle systems in the rat

    Get PDF
    AbstractThe appearance of specific receptors for the Ca2+ channel antagonist nitrendipine has been followed during the fetal and post-natal development of rat brain without cerebellum, cerebellum, skeletal muscle and cardiac muscle. The number of nitrendipine receptors is low at the fetal stage and increases drastically during post-natal development of brain, cerebellum, skeletal muscle and cardiac muscle. The time course of this increase is different for each type of tissue studied. No significant change in receptor ligand dissociation constant (Kd) can be detected over the development period studied. The results are discussed in relation with the known properties of the differentiation process in the four types of excitable tissues studied

    Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel

    Get PDF
    AbstractNon-inactivating or slowly inactivating proton-gated cation channels are thought to play an important role in the perception of pain that accompanies tissue acidosis. We have identified a novel human proton-gated cation channel subunit that has biphasic desensitisation kinetics with both a rapidly inactivating Na+-selective and a sustained component. The protein shares 84% sequence identity with the proton-gated cation channel rASIC3 (rDRASIC) from rat sensory neurones. The biphasic desensitisation kinetics and the sequence homology suggest that this novel clone (hASIC3) is the human orthologue of rASIC3 (rDRASIC). While rASIC3 (rDRASIC) requires very acidic pH (pH < 4.5) for activation of the sustained current, the non-inactivating hASIC3 current starts to be activated when the pH decreases to below pH 6. hASIC3 is an acid sensor and might play an important role in the detection of lasting pH changes in human. We localised the hASIC3 gene to the human chromosome 7q35, 6.4 cRad telomeric from the microsatellite AFMA082XC9

    A Potent Protective Role of Lysophospholipids Against Global Cerebral Ischemia and Glutamate Excitotoxicity in Neuronal Cultures

    Get PDF
    International audienceLysophospholipids (LPLs) are important interme-diates in the synthesis and degradation of membrane phospho-lipids. Here we show that certain LPLs, particularly lysophos-phatidylcholine and lysophosphatidylinositol, prevent neuronal death both in an in vivo model of transient global ischemia and in an in vitro model of excitotoxicity using primary cultures of cerebellar granule cells exposed to high extracellular concentrations of glutamate (20-40 mol/L). The intravenous injection of lysophosphatidylcholine or lysophosphatidylinositol at a concentration of 200 nmol/kg induced a survival of CA1 py-ramidal neurons as high as approximately 95%, even when the treatment was started 30 minutes after 15-minute global isch-emia. In contrast, lysophosphatidic acid induced no protection. This work also provides evidence that a pretreatment with ly-sophosphatidylcholine or lysophosphatidylinositol (200 nmol/kg) injected as long as 3 days before a severe 6-minute ischemia provided a potent tolerance against neurodegenera-tion. Neuroprotection was also observed in in vitro experiments with LPLs. Taken together, in vivo and in vitro data suggest a potential therapeutic use of LPLs as antiischemic compounds. The potential role of 2P-domain K + channels as targets of LPLs in this potent neuroprotective effect is discussed

    The inotropic effect of endothelin-1 on rat atria involves hydrolysis of phosphatidylinositol

    Get PDF
    AbstractEndothelin-1 induces a positive inotropic response in isolated left atria of the rat with an IC50 value of 20 nM. The contractile effect of endothelin is larger than that of other inotropic hormones such as phenylephrine and epinephrine and smaller than that of Bay K8644. In the spontaneously active right atria, endothelin induces a positive inotropic effect with no chronotropic effect. Endothelin does not modify intracellular levels of cAMP under basal conditions or after stimulation with isoproterenol but stimulates the formation of inositol phosphates. Mobilization of inositol phospholipids is observed in the same range of concentrations as for the contractile action of endothelin. The contractile action of endothelin is not mediated by protein kinase C. It is antagonized by blockers of L-type Ca2+ channels, low external Ca2+ concentrations and drugs such as caffeine and ryanodine that interfere with Ca2+ release by the sarcoplasmic reticulum

    Voltage-gated potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming &#945; subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel

    Voltage-gated potassium channels (Kv) in GtoPdb v.2021.3

    Get PDF
    The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming &#945; subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel

    Inwardly rectifying potassium channels (KIR) in GtoPdb v.2021.3

    Get PDF
    The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels (Kir2.x) that are constitutively active, the G-protein-activated inward-rectifier K channels (Kir3.x) and the ATP-sensitive K channels (Kir6.x, which combine with sulphonylurea receptors (SUR1-3)). The pore-forming &#945; subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. Kir3.2 with Kir3.3)
    corecore