859 research outputs found

    Correlated fractal percolation and the Palis conjecture

    Full text link
    Let F1 and F2 be independent copies of correlated fractal percolation, with Hausdorff dimensions dimH(F1) and dimH(F2). Consider the following question: does dimH(F1)+dimH(F2)>1 imply that their algebraic difference F1-F2 will contain an interval? The well known Palis conjecture states that `generically' this should be true. Recent work by Kuijvenhoven and the first author (arXiv:0811.0525) on random Cantor sets can not answer this question as their condition on the joint survival distributions of the generating process is not satisfied by correlated fractal percolation. We develop a new condition which permits us to solve the problem, and we prove that the condition of (arXiv:0811.0525) implies our condition. Independently of this we give a solution to the critical case, yielding that a strong version of the Palis conjecture holds for fractal percolation and correlated fractal percolation: the algebraic difference contains an interval almost surely if and only if the sum of the Hausdorff dimensions of the random Cantor sets exceeds one.Comment: 22 page

    Small-world characteristics of EEG patterns in post-anoxic encephalopathy

    Get PDF
    Post-anoxic encephalopathy (PAE) has a heterogenous outcome which is difficult to predict. At present, it is possible to predict poor outcome using somatosensory evoked potentials in only a minority of the patients at an early stage. In addition, it remains difficult to predict good outcome at an early stage. Network architecture, as can be quantified with continuous electroencephalography (cEEG), may serve as a candidate measure for predicting neurological outcome. Here, we explore whether cEEG monitoring can be used to detect the integrity of neural network architecture in patients with PAE after cardiac arrest. From 56 patients with PAE treated with mild therapeutic hypothermia, 19-channel cEEG data were recorded starting as soon as possible after cardiac arrest. Adjacency matrices of shared frequencies between 1 and 25Hz of the EEG channels were obtained using Fourier transformations. Number of network nodes and connections, clustering coefficient (C), average path length (L), and small-world index (SWI) were derived. Outcome was quantified by the best cerebral performance category (CPC)-score within 6months. Compared to non-survivors, survivors showed significantly more nodes and connections. L was significantly higher and C and SWI were significantly lower in the survivor group than in the non-survivor group. The number of nodes, connections, and the L were negatively correlated with the CPC-score. C and SWI correlated positively with the CPC-score. The combination of number of nodes, connections, C, and L showed the most significant difference and correlation between survivors and non-survivors and CPC-score. Our data might implicate that non-survivors have insufficient distribution and differentiation of neural activity for regaining normal brain function. These network differences, already present during hypothermia, might be further developed as early prognostic markers. The predictive values are however still inferior to current practice parameters. Keywords: small-world network, continuous EEG, post-anoxic encephalopathy, prognosis, resuscitatio

    Manual de identificaçao das pragas, doenças, deficiencias minerais e injurias do algodoeiro no estado do Parana

    Full text link
    Cette brochure illustrée, résultat d'une revue bibliographique faite à partir de divers travaux principalement publiés au Brésil, décrit les principaux problèmes phytosanitaires rencontrés sur le coton dans l'état de Parana au Brésil : insectes nuisibles, maladies et autres troubles de nutrition minérale, de toxicités induites par les pesticides et d'accidents génétiques. Pour chacun des facteurs nuisible cités, l'agent causal et les techniques de lutte pour le combattre sont décrit

    Multidimensional relativistic MHD simulations of Pulsar Wind Nebulae: dynamics and emission

    Full text link
    Pulsar Wind Nebulae, and the Crab nebula in particular, are the best cosmic laboratories to investigate the dynamics of magnetized relativistic outflows and particle acceleration up to PeV energies. Multidimensional MHD modeling by means of numerical simulations has been very successful at reproducing, to the very finest details, the innermost structure of these synchrotron emitting nebulae, as observed in the X-rays. Therefore, the comparison between the simulated source and observations can be used as a powerful diagnostic tool to probe the physical conditions in pulsar winds, like their composition, magnetization, and degree of anisotropy. However, in spite of the wealth of observations and of the accuracy of current MHD models, the precise mechanisms for magnetic field dissipation and for the acceleration of the non-thermal emitting particles are mysteries still puzzling theorists to date. Here we review the methodologies of the computational approach to the modeling of Pulsar Wind Nebulae, discussing the most relevant results and the recent progresses achieved in this fascinating field of high-energy astrophysics.Comment: 29 pages review, preliminary version. To appear in the book "Modelling Nebulae" edited by D. Torres for Springer, based on the invited contributions to the workshop held in Sant Cugat (Barcelona), June 14-17, 201
    corecore