26 research outputs found

    Particle Swarm Optimization Algorithm for Optimizing Assignment of Blood in Blood Banking System

    No full text
    This paper reports the performance of particle swarm optimization (PSO) for the assignment of blood to meet patients’ blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessitate the development of mathematical models and techniques for effective handling of blood distribution among available blood types in order to minimize wastages and importation from external sources. This gives rise to the blood assignment problem (BAP) introduced recently in literature. We propose a queue and multiple knapsack models with PSO-based solution to address this challenge. Simulation is based on sets of randomly generated data that mimic real-world population distribution of blood types. Results obtained show the efficiency of the proposed algorithm for BAP with no blood units wasted and very low importation, where necessary, from outside the blood bank. The result therefore can serve as a benchmark and basis for decision support tools for real-life deployment

    Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.

    No full text
    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems

    Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach

    No full text
    Soft-computing and statistical learning models have gained substantial momentum in predicting type 2 diabetes mellitus (T2DM) disease. This paper reviews recent soft-computing and statistical learning models in T2DM using a meta-analysis approach. We searched for papers using soft-computing and statistical learning models focused on T2DM published between 2010 and 2021 on three different search engines. Of 1215 studies identified, 34 with 136952 patients met our inclusion criteria. The pooled algorithm’s performance was able to predict T2DM with an overall accuracy of 0.86 (95% confidence interval [CI] of [0.82, 0.89]). The classification of diabetes prediction was significantly greater in models with a screening and diagnosis (pooled proportion [95% CI] = 0.91 [0.74, 0.97]) when compared to models with nephropathy (pooled proportion = 0.48 [0.76, 0.89] to 0.88 [0.83, 0.91]). For the prediction of T2DM, the decision trees (DT) models had a pooled accuracy of 0.88 [95% CI: 0.82, 0.92], and the neural network (NN) models had a pooled accuracy of 0.85 [95% CI: 0.79, 0.89]. Meta-regression did not provide any statistically significant findings for the heterogeneous accuracy in studies with different diabetes predictions, sample sizes, and impact factors. Additionally, ML models showed high accuracy for the prediction of T2DM. The predictive accuracy of ML algorithms in T2DM is promising, mainly through DT and NN models. However, there is heterogeneity among ML models. We compared the results and models and concluded that this evidence might help clinicians interpret data and implement optimum models for their dataset for T2DM prediction

    Comparison of IWD-SA, Cordeau <i>et al</i>. [37], Pisinger and Ropke [39], Vidal <i>et al</i>. [30], and Juan <i>et al</i>.

    No full text
    <p>[<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0193751#pone.0193751.ref010" target="_blank">10</a>].</p

    Comparison of IWD, Cordeau <i>et al</i>. [37], Pisinger and Ropke [39], Vidal <i>et al</i>. [30], and Juan <i>et al</i>.

    No full text
    <p>[<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0193751#pone.0193751.ref010" target="_blank">10</a>].</p
    corecore