95 research outputs found

    Moderate Antiproteinuric Effect of Add-On Aldosterone Blockade with Eplerenone in Non-Diabetic Chronic Kidney Disease. A Randomized Cross-Over Study

    Get PDF
    Reduction of proteinuria and blood pressure (BP) with blockers of the renin-angiotensin system (RAS) impairs the progression of chronic kidney disease (CKD). The aldosterone antagonist spironolactone has an antiproteinuric effect, but its use is limited by side effects. The present study evaluated the short-term antiproteinuric effect and safety of the selective aldosterone antagonist eplerenone in non-diabetic CKD.Open randomized cross-over trial.Forty patients with non-diabetic CKD and urinary albumin excretion greater than 300 mg/24 hours.Eight weeks of once-daily administration of add-on 25–50 mg eplerenone to stable standard antihypertensive treatment including RAS-blockade.24 hour urinary albumin excretion, BP, p-potassium, and creatinine clearance.The mean urinary albumin excretion was 22% [CI: 14,28], P<0.001, lower during treatment with eplerenone. Mean systolic BP was 4 mmHg [CI: 2,6], P = 0.002, diastolic BP was 2 mmHg [CI: 0,4], P = 0.02, creatinine clearance was 5% [CI: 2,8], P = 0.005, lower during eplerenone treatment. After correction for BP and creatinine clearance differences between the study periods, the mean urinary albumin excretion was 14% [CI: 4,24], P = 0.008 lower during treatment. Mean p-potassium was 0.1 mEq/L [CI: 0.1,0.2] higher during eplerenone treatment, P<0.001. Eplerenone was thus well tolerated and no patients were withdrawn due to hyperkalaemia.Open label, no wash-out period and a moderate sample size.In non-diabetic CKD patients, the addition of eplerenone to standard antihypertensive treatment including RAS-blockade caused a moderate BP independent fall in albuminuria, a minor fall in creatinine clearance and a 0.1 mEq/L increase in p-potassium

    NFAT5 Is Activated by Hypoxia: Role in Ischemia and Reperfusion in the Rat Kidney

    Get PDF
    The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10–18 mmHg); however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO2) on NFAT5 activity. We found that 1) Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2) Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3) The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O2. 4) At 2.5% of O2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5) siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6) siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7) NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla) from rats subjected to an experimental model of ischemia and reperfusion (I/R). 7) Experimental I/R increased the NFAT5-target gene aldose reductase (AR). 8) NFAT5 activators (ATM and PI3K) were induced in vitro (HEK293 cells) and in vivo (I/R kidneys) with the same timing of NFAT5. 8) Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage

    Why are mineralocorticoid receptor antagonists cardioprotective?

    Get PDF
    Two clinical trials, the Randomized ALdosterone Evaluation Study (RALES) and the EPlerenone HEart failure and SUrvival Study (EPHESUS), have recently shown that mineralocorticoid receptor (MR) antagonists reduce mortality in patients with heart failure on top of ACE inhibition. This effect could not be attributed solely to blockade of the renal MR-mediated effects on blood pressure, and it has therefore been proposed that aldosterone, the endogenous MR agonist, also acts extrarenally, in particular in the heart. Indeed, MR are present in cardiac tissue, and possibly aldosterone synthesis occurs in the heart. This review critically addresses the following questions: (1) is aldosterone synthesized at cardiac tissue sites, (2) what agonist stimulates cardiac MR normally, and (3) what effects are mediated by aldosterone/MR in the heart that could explain the beneficial effects of MR blockade in heart failure? Conclusions are that most, if not all, of cardiac aldosterone originates in the circulation (i.e., is of adrenal origin), and that glucocorticoids, in addition to aldosterone, may serve as the endogenous agonist of cardiac MR. MR-mediated effects in the heart include effects on endothelial function, cardiac fibrosis and hypertrophy, oxidative stress, cardiac inotropy, coronary flow, and arrhythmias. Some of these effects occur via or in synergy with angiotensin II, and involve a non-MR-mediated mechanism. This raises the possibility that aldosterone synthase inhibitors might exert beneficial effects on top of MR blockade

    Increased free fetal DNA levels in early pregnancy plasma of women who subsequently develop preeclampsia and intrauterine growth restriction

    No full text
    Artículo de publicación ISI.Objective To determine if maternal plasma ffDNA is increased early in pregnancies which subsequently develop preeclampsia (PE) and intrauterine growth restriction (IUGR). Methods Blood was obtained at 11–14 weeks and plasma stored. Among those who delivered a male infant and had a birth weight under the tenth centile and/or PE, we divided them into those who delivered before 35 weeks (9) and those who delivered after this gestation (15). A third group with uncomplicated pregnancies was used as controls (24). Real time-polymerase chain reaction (RT-PCR) was carried out to detect the multi-copy Y chromosome associated DSY14 gene. Results There were no differences between the ffDNA levels in the group delivered after 35 weeks and the control group (2.23ge/mL–1.61ge/mL p = 0.39). However, the levels of ffDNA at 11–14 weeks were statistically, significantly higher in patients that delivered before 35 weeks (4.34ge/mL–1.61ge/mL p = 0.0018). A logistic regression analysis shows that for every unit (1ge/mL) in which ffDNA increases, the likelihood of having PE or a fetus growing under the tenth centile delivered before 35 weeks increases by 1.67 times (CI 1.13–2.47). Conclusion The concentration of ffDNA is significantly higher even during early pregnancy, in patients who subsequently develop PE and/or IUGR and are delivered before 35 weeks. Copyright 2009 John Wiley & Sons, Ltd. KEY WORDS: preeclampsia; maternal disease; placental disease; DNA; fetal Cells; nucleic acids and proteins; maternal serum Screening; fetal and placental pathology
    • …
    corecore