90 research outputs found

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-08-29, rev-recd 2021-01-26, accepted 2021-02-01, registration 2021-02-02, pub-electronic 2021-02-22, online 2021-02-22, pub-print 2021-08Publication status: PublishedFunder: RCUK | Natural Environment Research Council (NERC); doi: https://doi.org/10.13039/501100000270; Grant(s): NE/N009452/1Funder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); doi: https://doi.org/10.13039/501100000268; Grant(s): BB/S010661/1Abstract: Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt

    Get PDF
    Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems

    Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands

    Get PDF
    Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross-seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change

    Earnings management and audit quality:stakeholders’ perceptions

    Get PDF
    This paper examines the perceptions of Libyan Commercial Banks’ (LCBs) stakeholders regarding the role of the external auditor in relation to earnings management (EM). A total of 28 semi-structured interviews were carried out with a range of LCB stakeholders comprising preparers of financial statements, users, regulators and academics. A questionnaire survey of stakeholders which yielded 102 Responses (response rate 53%) was also carried out. A variety of views were held which varied to some extent according to stakeholder group. A widely held perception amongst interviewees was that the auditor has the ability to detect EM practices but may not be able to prevent it. However questionnaire respondents were, in aggregate, more confident of the auditor’s ability to deter EM due to the influence of the audit report. The paper provides insights into stakeholders’ perceptions of the quality of bank audits. The findings are of particular relevance to regulators, and specifically, the Central Bank of Libya. Perceptions of audit quality raise questions about its guidance and regulations especially in connection with audit firm rotation. Perceptions of audit quality, and therefore, of the credibility of financial statements should be of interest to all stakeholders. The importance of the banking sector for society has been amply demonstrated in recent years. A well-functioning audit function is a key component of its regulation. To the best of our knowledge, this paper is the first to examine issues related to banks’ audit quality and audit firm rotation in Libya

    Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-05-03, rev-recd 2021-06-18, accepted 2021-10-06, pub-electronic 2021-10-27Article version: VoRPublication status: PublishedFunder: Natural Environment Research Council; Id: http://dx.doi.org/10.13039/501100000270; Grant(s): NE/N009452/1Funder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/S010661/1Abstract: Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross‐seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change

    Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem

    Get PDF
    The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change
    corecore