26 research outputs found

    Frequency of 12 mutations in 114 children with phenylketonuria in the Midwest region of the USA

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42497/1/10545_2004_Article_BF00711829.pd

    Carcinogenic Effects in a Phenylketonuria Mouse Model

    Get PDF
    Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAHenu2) which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ) PAHenu2 mice were >12-fold those of heterozygous (HTZ) littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA) carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA). Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAHenu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAHenu2 mice were not protective against cancer

    A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    Get PDF
    Fruit and vegetable consumption has been associated with several health benefits; however the mechanisms are largely unknown at the biochemical level. Our research aims to investigate whether plasma metabolome profiling can reflect biological effects after feeding rats with raw apple by using an untargeted UPLC-ESI-TOF-MS based metabolomics approach in both positive and negative mode. Eighty young male rats were randomised into groups receiving daily 0, 5 or 10 g fresh apple slices, respectively, for 13 weeks. During weeks 3-6 some of the animals were receiving 4 mg/ml 1,2-dimethylhydrazine dihydrochloride (DMH) once a week. Plasma samples were taken at the end of the intervention and among all groups, about half the animals were 12 h fasted. An initial ANOVA-simultaneous component analysis with a three-factor or two-factor design was employed in order to isolate potential metabolic variations related to the consumption of fresh apples. Partial least squares-discriminant analysis was then applied in order to select discriminative features between plasma metabolites in control versus apple fed rats and partial least squares modelling to reveal possible dose response. The findings indicate that in laboratory rats apple feeding may alter the microbial amino acid fermentation, lowering toxic metabolites from amino acids metabolism and increasing metabolism into more protective products. It may also delay lipid and amino acid catabolism, gluconeogenesis, affect other features of the transition from the postprandial to the fasting state and affect steroid metabolism by suppressing the plasma level of stress corticosteroids, certain mineralocorticoids and oxidised bile acid metabolites. Several new hypotheses regarding the cause of health effects from apple intake can be generated from this study for further testing in humans. © 2013 Springer Science+Business Media New York

    Stigma and other correlates of sharing injection equipment among people with HIV in St. Petersburg, Russia

    No full text
    ABSTRACTStigma that people with HIV who inject drugs experience negatively impacts HIV and substance use care, but stigma’s association with sharing injection equipment is not known. This is a cross-sectional analysis of data from two studies of people with HIV reporting drug injection (N = 319) in St. Petersburg, Russia (September 2018-December 2020). We used logistic regression to examine associations between HIV stigma and substance use stigma scores (categorised into quartiles) and past 30-day equipment sharing, adjusting for demographic and clinical characteristics. Secondary analyses examined associations of arrest history and social support with sharing equipment. Almost half (48.6%) of participants reported sharing injection equipment. Among groups who did and did not share, mean HIV stigma (2.3 vs 2.2) and substance use stigma (32 vs 31) scores were similar. Adjusted analyses detected no significant associations between HIV stigma quartiles (global p-value = 0.85) or substance use stigma quartiles (global p-value = 0.51) and sharing equipment. Neither arrest history nor social support were significantly associated with sharing equipment. In this cohort, sharing injection equipment was common and did not vary based on stigma, arrest history, or social support. To reduce equipment sharing, investments in sterile injection equipment access in Russia should be prioritised over interventions to address stigma

    Long-term treatment of phenylketonuria with a new medical food containing large neutral amino acids

    No full text
    Phenylketonuria (PKU) is an autosomal recessive disease caused by deficient activity of phenylalanine hydroxylase. A low phenylalanine (Phe) diet is used to treat PKU. The diet is very restrictive, and dietary adherence tends to decrease as patients get older. Methods to improve dietary adherence and blood Phe control are continuously under investigation. A new formula Phe-neutral amino acid (PheLNAA) has been tested in this study with the purpose of improving the compliance and lowering blood phenylalanine. The formula has been tested for nitrogen balance, and it is nutritionally complete. It is fortified with more nutritional additives that can be deficient in the PKU diet, such as B12, Biotin, DHA, Lutein and increased levels of large neutral amino acids to help lower blood Phe. The new formula has been tested on 12 patients with a loading test of 4 weeks. Fifty-eight percent of patients had a significant decline in blood Phe concentration from baseline throughout the study. The PheLNAA was well tolerated with excellent compliance and without illnesses during the study. In conclusion, the new formula is suitable for life-long treatment of PKU, and it offers the PKU clinic a new choice for treatment
    corecore