22 research outputs found

    Autopilot spatially-adaptive active contour parameterization for medical image segmentation

    Get PDF
    In this work, a novel framework for automated, spatially-adaptive adjustment of active contour regularization and data fidelity parameters is proposed and applied for medical image segmentation. The proposed framework is tailored upon the isomorphism observed between these parameters and the eigenvalues of diffusion tensors. Since such eigenvalues reflect the diffusivity of edge regions, we embed this information in regularization and data fidelity parameters by means of entropy-based, spatially-adaptive `heatmaps'. The latter are able to repel an active contour from randomly directed edge regions and guide it towards structured ones. Experiments are conducted on endoscopic as well as mammographic images. The segmentation results demonstrate that the proposed framework bypasses iterations dedicated to false local minima associated with noise, artifacts and inhomogeneities, speeding up contour convergence, whereas it maintains a high segmentation quality

    Unsupervised level set parameterization using multi-scale filtering

    Get PDF
    This paper presents a novel framework for unsupervised level set parameterization using multi-scale filtering. A standard multi-scale, directional filtering algorithm is used in order to capture the orientation coherence in edge regions. The latter is encoded in entropy-based image `heatmaps', which are able to weight forces guiding level set evolution. Experiments are conducted on two large benchmark databases as well as on real proteomics images. The experimental results demonstrate that the proposed framework is capable of accelerating contour convergence, whereas it obtains a segmentation quality comparable to the one obtained with empirically optimized parameterization

    Bimodal Texture Segmentation with the Lee-Seo Model

    No full text
    Abstract. This paper presents a novel approach to bimodal texture segmentation. The proposed approach features a local binary pattern-based scheme to transform bimodal textures into bimodal gray-scale intensities, segmentable by the Lee-Seo active contour model. This process avoids the iterative calculation of active contour equation terms derived from textural feature vectors, thus reducing the associated computational overhead. The proposed approach is region-based and invariant to the initialization of the level-set function, as it converges to a stationary global minimum. It is experimentally validated on 18 composite texture images of the Brodatz album, obtaining high quality segmentation results, whereas the convergence times are up to an order of magnitude smaller than the ones reported for other active contour approaches for texture segmentation

    Adaptive Vision System for Segmentation of Echographic Medical Images based on a Modified Mumford-Shah Functional

    No full text
    Abstract. This paper presents a novel adaptive vision system for accurate segmentation of tissue structures in echographic medical images. The proposed vision system incorporates a level-set deformable model based on a modified Mumford-Shah functional, which is estimated over sparse foreground and background regions in the image. This functional is designed so that it copes with the intensity inhomogeneity that characterizes echographic medical images. Moreover, a parameter tuning mechanism has been considered for the adaptation of the deformable model parameters. Experiments were conducted over a range of echographic images displaying abnormal structures of the breast and of the thyroid gland. The results show that the proposed adaptive vision system stands as an efficient, effective and nearly objective tool for the segmentation of echographic images.

    Computer Vision and Pattern Recognition for the Analysis of 2D/3D Remote Sensing Data in Geoscience: A Survey

    No full text
    Historically, geoscience has been a prominent domain for applications of computer vision and pattern recognition. The numerous challenges associated with geoscience-related imaging data, which include poor imaging quality, noise, missing values, lack of precise boundaries defining various geoscience objects and processes, as well as non-stationarity in space and/or time, provide an ideal test bed for advanced computer vision techniques. On the other hand, the developments in pattern recognition, especially with the rapid evolution of powerful graphical processing units (GPUs) and the subsequent deep learning breakthrough, enable valuable computational tools, which can aid geoscientists in important problems, such as land cover mapping, target detection, pattern mining in imaging data, boundary extraction and change detection. In this landscape, classical computer vision approaches, such as active contours, superpixels, or descriptor-guided classification, provide alternatives that remain relevant when domain expert labelling of large sample collections is often not feasible. This issue persists, despite efforts for the standardization of geoscience datasets, such as Microsoft’s effort for AI on Earth, or Google Earth. This work covers developments in applications of computer vision and pattern recognition on geoscience-related imaging data, following both pre-deep learning and post-deep learning paradigms. Various imaging modalities are addressed, including: multispectral images, hyperspectral images (HSIs), synthetic aperture radar (SAR) images, point clouds obtained from light detection and ranging (LiDAR) sensors or digital elevation models (DEMs)
    corecore