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Abstract

In this work, a novel framework for automated,
spatially-adaptive  adjustment of active contour
regularization and data fidelity parameters is proposed
and applied for medical image segmentation. The
proposed framework is tailored upon the isomorphism
observed between these parameters and the
eigenvalues of diffusion tensors. Since such
eigenvalues reflect the diffusivity of edge regions, we
embed this information in regularization and data
fidelity parameters by means of entropy-based,
spatially-adaptive ‘heatmaps’. The latter are able to
repel an active contour from randomly directed edge
regions and guide it towards structured ones.
Experiments are conducted on endoscopic as well as
mammographic images. The segmentation results
demonstrate that the proposed framework bypasses
iterations dedicated to false local minima associated
with noise, artifacts and inhomogeneities, speeding up
contour convergence, whereas it maintains a high
segmentation quality.

1. Introduction

Across the field of active contour segmentation,
nearly all models rely on parameters which need to be
tuned on a trial and error basis [1]-[5]. Researchers
propose contradictory claims for empirically optimized
parameterization, dependent on each dataset to be
tested. A generally applicable active contour parameter
configuration is still an open issue.

Region-based active contours have been proposed
in image analysis literature as suitable for several
medical imaging modalities [6]-[9]. They are
topologically adaptable and cope well with regions of
weak edges, such as human tissues. Like most active
contour models, they rely on parameters weighting the
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so-called regularization and data fidelity energy terms,
which significantly affect their performance. Despite
this significance, in most existing methods, both
regularization and data fidelity terms are manually set
and kept intact over the image. As a result,
segmentation results are suboptimal and subjective. In
addition, manual parameter setting asks for technical
skills from the end-user, who is very often a Medical
Doctor (MD).

Tracing the state-of-the-art methods presented in
literature trying to tackle the issue of region-based
active contour empirical parameterization, two key
elements are mainly considered: a) the trade-off
between regularization and data fidelity terms as well
as, b) the spatial variance of regularization and data
fidelity parameters. Ma and Yu [10] try to solve the
balance between energy terms by utilizing a
morphological approach. However, their method does
not adjust each individual parameter separately.
MclIntosh and Hamarneh [11] adapt regularization
weights across a set of images. Although an optimal
regularization weight can be found for a single image
in a set, the same weight may not be optimal for all
regions of that image. In addition, the data fidelity term
is still empirically determined. Erdem and Tari [12]
utilize data-driven local cues focusing on edge
consistency and texture cues. Nevertheless, this
method requires technical skills from the end user.
Pluempitiwiriyaweg et al. [13] and Tsai et al. [14]
update parameters during the iterative process of
evolution. Nonetheless, this dependency may yield to
the propagation of early errors in the latter stages of
contour evolution. Dong et al. [15] attempt to vary the
regularization term based on the surface curvature of a
pre-segmented vessel. However, the regularization
weight does not rely on image properties. On the
contrary, it depends upon the shape of the target region
thus, limiting the general applicability of the method
on different image modalities.
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In this work, a novel framework for automated,
spatially-adaptive adjustment of regularization and data
fidelity parameters of active contours is presented and
applied for the segmentation of medical images. The
proposed framework aims to relieve MDs from the
tedious and time-consuming process of empirical
parameterization of active contours, as well as to
enrich segmentation results with objectivity and
reproducibility, in order to support early diagnosis and
clinical evaluation. It is based on the key observation
that regularization and data fidelity parameters share
the same orthogonal directions with the eigenvalues of
diffusion tensors. These eigenvalues hold essential
information  associated with localized edges.
Accordingly, we embed this information in the
regularization and data fidelity parameters by means of
entropy-based, spatially-adaptive ‘heatmaps’. The
latter are able to drive the contour away from randomly
directed edge regions and guide it towards structured
ones. Hence, iterations dedicated to false local minima
are bypassed, speeding up contour convergence. The
proposed framework does not require technical skills
from the end-user, is applicable to various medical
image modalities and is not affected by alterations on
the shape of target regions. In addition, due to its
simplicity, it can be embedded into several region-
based active contour variations.

The remainder of this paper is organized as follows:
Section 2 presents the proposed framework and Section
3 demonstrates the experimental results. The
conclusions of this study are summarized in Section 4.

2. Proposed framework

The proposed framework takes into account the
concept of anisotropic diffusion patterns [16]. The
latter allow the mapping of spatially-varying regions in
accordance with their directionality. Fig. 1(a) depicts a
schematic representation of this idea with several
ellipsoids consisting of different diffusion patterns.
Two of them correspond to a single direction and are
thus associated with structured target edge regions,
whereas the next two correspond to multiple directions
and are therefore associated with noisy regions or
regions of image artifacts. It should be mentioned that,
medical images consist of target regions which exhibit
weak edges however; these images are also plagued by
artifacts and noise as well as heterogeneity which
yields to inhomogeneous background.

Aiming at capturing the nature of each region in a
medical image, i.e. whether it corresponds to a target
edge or noisy region, the Information Entropy
(IE) measure is utilized. The latter obtains high values
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in cases of regions characterized by a diffusion pattern
of multiple directions. On the contrary, entropy obtains
lower values in cases of regions characterized by a
diffusion pattern of one unique direction. Fig. 1(b)
depicts the entropy behavior on each diffusion pattern
of Fig. 1(a).

(a)
Figure 1. A schematic representation of distinct
diffusion patterns, (a) ellipsoids consisting of single
and multiple direction diffusion patterns, (b) entropy
behavior /E on each diffusion pattern.

In the context of the proposed framework, the image
is considered as a grid of gxq samples. The sample size
must be sufficiently large to preserve the direction of
the main structures of the target region. Each sample is
decomposed to the finest and second finest scales by
means of a multi-scale, multi-directional and
anisotropic filtering descriptor such as the contourlet
transform [17]. For each subband image I, entropy
measures are calculated according to the following
equations:
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where [Ej; is the information entropy of the subband
image I, in the k" direction and the j** level, My, is
the row size and Nj;, the column size of the subband
image. As a result, spatially-adaptive entropy
‘heatmaps’ are formulated in order to reflect the
diffusivity along each region.

Considering once more the diffusion patterns
illustrated in Fig. 1(a), each ellipsoid is characterized
by two axes, the principal and the minor, which
describe its length and width, respectively and are
perpendicular to each other. These axes correspond to
principal and minor eigenvectors and eigenvalues. The
principal eigenvalue A, reflects the diffusivity along
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the principal eigenvector and is longitudinal with
respect to the principal axis, whereas the minor
eigenvalue A, reflects the diffusivity along the minor
eigenvector and is vertical with respect to the principal
axis. Fig. 2(a) depicts principal and minor eigenvalues
of an ellipsoid.

Region-based active contours evolve by minimizing
the following energy functional:

E=w, E.,  +w, E, (3)

where E,..; and E, are associated with regularization
and data fidelity energy terms, respectively, whereas
Wyeg and wyp are weighting parameters.

A Wrag

Ll { ™~
Az 7 ulway
~ r

- Y .

(a) (b)
Figure 2.(a) Eigenvalues of ellipsoid, (b)
regularization and data fidelity parameters of active
contour.

Fig. 2(b) depicts regularization and data fidelity
parameters of a contour. Regularization and data
fidelity forces are tangent and vertical with respect to
the principal axis of the contour, respectively. It is
tempting to notice that the regularization weight
corresponds to the same direction as the principal
eigenvalue of the ellipsoid. This is also the case with
the data fidelity weight, which corresponds to the same
direction as the minor eigenvalue. This isomorphism
indicates a link between the regularization and data
fidelity parameters and the eigenvalues of diffusion
patterns.

As eigenvalues reflect the diffusivity along the axes
of an ellipsoid, regularization and data fidelity
parameters reflect the diffusivity along the axes of the
contour by means of spatially-adaptive entropy
‘heatmaps’ and are calculated according to the
following equations:

Wyeg < (/W) XN XM, w, =arg, max(E,(I,))#)

The key notion is that, by appropriately amplifying
data fidelity forces in noisy, high-entropy regions, the
contour will be repelled. Hence, iterations dedicated to
erroneous local minima will be bypassed, speeding up
contour convergence towards target edges. It should be
noticed that the proposed framework achieves autopilot
spatially-adaptive parameterization.

3. Results

The proposed framework has been integrated into
the region-based Chan-Vese model [5] so as to
evaluate the segmentation performance of the autopilot
version versus the manually fine-tuned version. The
experimental results are evaluated by means of the
region overlap measure, known as the Tannimoto
Coefficient (TC) [18], which is defined by:

C = N(AﬁB) (5)
N(4AU B)

where A4 is the region identified by the segmentation
method under evaluation, B is the ground truth region
and N() indicates the number of pixels of the enclosed
region.

Experiments are conducted on two sets of medical
images. The first set consists of 32 endoscopic images
containing polyps, provided by the General Hospital of
Athens “Laiko”, Medical School, University of
Athens. All polyps were investigated by MD experts,
who provided ground truth segmentations. Fig. 3
illustrates segmentation results of the autopilot Chan-
Vese model, using the proposed framework.

3

(c)
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Figure 3.(a)-(c) Endoscopy images containing polyps,
(a))-(cy) ground truth images, (a,)-(c;) segmentations
obtained by the manually fine-tuned version, in the
same iteration that the autopilot version has converged,
(a3)-(c3) segmentation results of the autopilot Chan-
Vese model.

Leaned on the results it is evident that, in the
manually fine-tuned version which utilizes fixed,
spatially-uniform parameters, contour convergence is
delayed. On the contrary, the results support the
autopilot version, where forces guiding contour
evolution are appropriately amplified in non-target,
high-entropy regions, accelerating convergence.

The second set consists of 50 mammographic
images randomly obtained by the Mini-MIAS
Database [19] containing fatty, well-defined and ill-
defined, benign and malignant masses. Fig. 4 illustrates
segmentation results of the autopilot Chan-Vese
model, using the proposed framework. It is once more
evident that the autopilot version yields a high
segmentation quality at a much reduced convergence
rate.

The autopilot version achieves an average TC value
of 82.9+1.6%, which is comparable to the 7C value of
80.7+1.8% obtained by the manually fine-tuned
version, with regards to both endoscopic and
mammographic images tested. However, the autopilot
version converges in 10-20 times less iterations. The
original version achieves a 7C value of 52.4+11.3%, in
the same iteration that the autopilot version has
converged.
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(a3) (bs) (c3)
Figure 4.(a)-(c) Mammographic images containing
abnormalities, (a;)-(c;) ground truth images, (a,)-(c,)
segmentations obtained by the manually fine-tuned
version, in the same iteration that the autopilot version
has converged, (a;)-(c3) segmentation results of the
autopilot Chan-Vese model.

4. Conclusions

In this work, a novel framework for automated,
spatially-adaptive adjustment of regularization and data
fidelity parameters is presented and applied for the
segmentation of medical images. The proposed
framework is based on an isomorphism between these
parameters and the eigenvalues of diffusion patterns.
Since eigenvalues of diffusion tensors hold vital
information associated with localized edges, we embed
this information in the amount of diffusion along
orthogonal directions by means of spatially-adaptive,
entropy ‘heatmaps’, which are able to guide contour
evolution.

The proposed framework has been experimentally
evaluated on endoscopic as well as mammographic
images. The experimental results show that the
autopilot version is capable of accelerating contour
convergence as well as maintaining a high
segmentation quality, comparable to the one obtained
by the manually fine-tuned version. It should be noted
that, the latter is a cumbersome and time-consuming
process which requires technical skills from the end
user and generates segmentation results which lack
objectivity. Future directions of this work include
investigation of the proposed framework on different
types of medical image modalities.
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