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Abstract 

 
In this work, a novel framework for automated, 

spatially-adaptive adjustment of active contour 
regularization and data fidelity parameters is proposed 
and applied for medical image segmentation. The 
proposed framework is tailored upon the isomorphism 
observed between these parameters and the 
eigenvalues of diffusion tensors.  Since such 
eigenvalues reflect the diffusivity of edge regions, we 
embed this information in regularization and data 
fidelity parameters by means of entropy-based, 
spatially-adaptive ‘heatmaps’. The latter are able to 
repel an active contour from randomly directed edge 
regions and guide it towards structured ones. 
Experiments are conducted on endoscopic as well as 
mammographic images. The segmentation results 
demonstrate that the proposed framework bypasses 
iterations dedicated to false local minima associated 
with noise, artifacts and inhomogeneities, speeding up 
contour convergence, whereas it maintains a high 
segmentation quality. 

 
 
1. Introduction 
 

Across the field of active contour segmentation, 
nearly all models rely on parameters which need to be 
tuned on a trial and error basis [1]-[5]. Researchers 
propose contradictory claims for empirically optimized 
parameterization, dependent on each dataset to be 
tested. A generally applicable active contour parameter 
configuration is still an open issue. 

Region-based active contours have been proposed 
in image analysis literature as suitable for several 
medical imaging modalities [6]-[9]. They are 
topologically adaptable and cope well with regions of 
weak edges, such as human tissues. Like most active 
contour models, they rely on parameters weighting the 

so-called regularization and data fidelity energy terms, 
which significantly affect their performance. Despite 
this significance, in most existing methods, both 
regularization and data fidelity terms are manually set 
and kept intact over the image. As a result, 
segmentation results are suboptimal and subjective. In 
addition, manual parameter setting asks for technical 
skills from the end-user, who is very often a Medical 
Doctor (MD).  

Tracing the state-of-the-art methods presented in 
literature trying to tackle the issue of region-based 
active contour empirical parameterization, two key 
elements are mainly considered: a) the trade-off 
between regularization and data fidelity terms as well 
as, b) the spatial variance of regularization and data 
fidelity parameters. Ma and Yu [10] try to solve the 
balance between energy terms by utilizing a 
morphological approach. However, their method does 
not adjust each individual parameter separately. 
McIntosh and Hamarneh [11] adapt regularization 
weights across a set of images. Although an optimal 
regularization weight can be found for a single image 
in a set, the same weight may not be optimal for all 
regions of that image. In addition, the data fidelity term 
is still empirically determined. Erdem and Tari [12] 
utilize data-driven local cues focusing on edge 
consistency and texture cues. Nevertheless, this 
method requires technical skills from the end user. 
Pluempitiwiriyaweg et al. [13] and Tsai et al. [14] 
update parameters during the iterative process of 
evolution. Nonetheless, this dependency may yield to 
the propagation of early errors in the latter stages of 
contour evolution. Dong et al. [15] attempt to vary the 
regularization term based on the surface curvature of a 
pre-segmented vessel. However, the regularization 
weight does not rely on image properties. On the 
contrary, it depends upon the shape of the target region 
thus, limiting the general applicability of the method 
on different image modalities.  
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