12 research outputs found

    Genetic aspects of dental disorders

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.This paper reviews past and present applications of quantitative and molecular genetics to dental disorders. Examples are given relating to craniofacial development (including malocclusion), oral supporting tissues (including periodontal diseases) and dental hard tissues (including defects of enamel and dentine as well as dental caries). Future developments and applications to clinical dentistry are discussed. Early investigations confirmed genetic bases to dental caries, periodontal diseases and malocclusion, but research findings have had little impact on clinical practice. The complex multifactorial aetiologies of these conditions, together with methodological problems, have limited progress until recently. Present studies are clarifying previously unrecognized genetic and phenotypic heterogeneities and attempting to unravel the complex interactions between genes and environment by applying new statistical modelling approaches to twin and family data. linkage studies using highly polymorphic DNA markers are providing a means of locating candidate genes, including quantitative trait loci (QTL). In future, as knowledge increases: it should be possible to implement preventive strategies for those genetically-predisposed individuals who are identified-predisposed individuals who are identified to be at risk.Grant C. Townsend, Michael J. Aldred and P. Mark Bartol

    Future Airspace Design by Dynamic Sectorization

    No full text
    The future airspace has to provide a reliable infrastructure and operational concept to ensure efficient and safe operations considering both flight-centric operations and the integration of new entrants. We propose an approach for a dynamic sectorization to manage the air traffic demand and flow appropriately. Our dynamic sectorization results in enhancements of the current operational structure (less deviation in controller task load) and leads to a significantly lower controller task load for the newly created airspace. Since future 4D trajectory management demands an efficient consideration of operational (e.g., temporally restricted areas), ecological (e.g., contrail prevention), and economic (e.g., functional airspace blocks) constraints, our dynamic sectorization method contributes to the highly flexible use of current and future airspace. In this paper, we provide an overview of several use cases and describe the working principle of our approach: fuzzy clustering of air traffic, Voronoi diagram for initial structures, and evolutionary algorithms for optimization

    An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems

    No full text
    Bin packing problem (BPP) is a classical combinatorial optimization problem widely used in a wide range of fields. The main aim of this paper is to propose a new variant of whale optimization algorithm named improved Lévy-based whale optimization algorithm (ILWOA). The proposed ILWOA adapts it to search the combinatorial search space of BPP problems. The performance of ILWOA is evaluated through two experiments on benchmarks with varying difficulty and BPP case studies. The experimental results confirm the prosperity of the proposed algorithm in proficiency to find the optimal solution and convergence speed. Further, the obtained results are discussed and analyzed according to the problem size.No Full Tex
    corecore