5 research outputs found

    Overview of Atmospheric Simulation Efforts in CTA

    Full text link
    The Cherenkov Telescope Array (CTA) is an observatory for ground-based gamma-ray astronomy currently under construction, which will observe photons with very high energies (20 GeV – 300 TeV). One of the main contributions to the systematic uncertainties stems from the uncertainty on the atmospheric density profile, of molecules and aerosols. To minimize these systematics a full calibration of the atmospheric properties is important as well as a calibration of the detector response. In the paper we introduce the strategy for atmospheric simulations, use of Monte Carlo simulations and available CTA computing resources. We also describe in more detail realized and planned atmospheric simulations as well as the Czech contribution to this effort

    Core Cosmology Library: Precision Cosmological Predictions for LSST

    Get PDF
    The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL.Comment: 38 pages, 18 figures, matches ApJS accepted versio

    Overview of Atmospheric Simulation Efforts in CTA

    No full text
    The Cherenkov Telescope Array (CTA) is an observatory for ground-based gamma-ray astronomy currently under construction, which will observe photons with very high energies (20 GeV – 300 TeV). One of the main contributions to the systematic uncertainties stems from the uncertainty on the atmospheric density profile, of molecules and aerosols. To minimize these systematics a full calibration of the atmospheric properties is important as well as a calibration of the detector response. In the paper we introduce the strategy for atmospheric simulations, use of Monte Carlo simulations and available CTA computing resources. We also describe in more detail realized and planned atmospheric simulations as well as the Czech contribution to this effort

    Core Cosmology Library: Precision Cosmological Predictions for LSST

    Get PDF
    The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL

    Core Cosmology Library: Precision Cosmological Predictions for LSST

    No full text
    The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL
    corecore