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ABSTRACT

The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree

of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many

cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass

function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the

expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the

capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation

procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined

numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering,

galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty

of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package

written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL.
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1. INTRODUCTION

Starting in the next decade, large-scale galaxy surveys

will drive a new era of high precision cosmology (LSST

Dark Energy Science Collaboration 2012; Green et al.

2011; Laureijs et al. 2011). One of their main goals is

to answer the question of the origin of cosmic accelera-

tion, in other words, to elucidate the nature of “dark

energy”, broadly understood as a family of potential

models: from a cosmological constant to a dynamical

field and modifications of gravity (see for example Car-

roll 2001; Peebles & Ratra 2003; Padmanabhan 2003;

Copeland et al. 2006; Ishak 2007; Weinberg et al. 2013

and references therein). These data will also allow us

to shed light on a number of open questions in funda-

mental physics, such as the nature of dark matter (Feng

2010; Porter et al. 2011), the mass of neutrinos (Wong

2011; Lesgourgues & Pastor 2012a; Allison et al. 2015)

or the level of primordial non-Gaussianity (Dalal et al.

2008; Desjacques & Seljak 2010).

High precision constraints on dark energy models will

be achieved by probing at the same time the expan-

sion and growth history of the Universe over a long red-

shift baseline. For this purpose, it will be crucial to

combine measurements of multiple cosmological probes:

weak and strong gravitational lensing, the clustering of

galaxies, distances to supernovae, and the abundance,

clustering and gravitational lensing of galaxy clusters.

Current weak lensing surveys, such as the Dark Energy

Survey1 and the Kilo-Degree Survey2, have started to

take this approach already (Joudaki et al. 2018; van

Uitert et al. 2018; DES Collaboration et al. 2017; Krause

et al. 2017). From a theoretical perspective, there are

two challenges faced by the next generation of galaxy

surveys.

First, we need to ensure that all probes are modeled

accurately from a physical point of view, including cos-

mological, astrophysical, and observational effects, to

avoid potential biases in the final cosmological results.

In the context of weak gravitational lensing, for example,

phenomena that can lead to biases include the impact of

baryons on the distribution of matter and the intrinsic

alignments of galaxies (e.g. van Daalen et al. 2011; Sem-

boloni et al. 2011; Troxel & Ishak 2015; Krause et al.

2016; Blazek et al. 2017; Chisari et al. 2018). In the

context of galaxy clustering, the most relevant astro-

physical systematic is the galaxy-matter bias relation on

small scales (Zhao et al. 2013; Desjacques et al. 2016).

Effects such as magnification of number counts and red-

1 https://www.darkenergysurvey.org
2 http://kids.strw.leidenuniv.nl

shift space distortions need to be included in the models

as well (Alonso & Ferreira 2015; Ghosh et al. 2018).

Second, even standard cosmological quantities in the

simplest models, such as distances in a ΛCDM cosmol-

ogy, have to be predicted to a validated high degree of

numerical accuracy. Achieving this objective is not triv-

ial, as computing these quantities generally requires, for

example, numerical integration or interpolation, both of

which are prone to numerical error.

Commonly used, publicly available, cosmological pre-

diction tools are: astropy3 (Astropy Collaboration

et al. 2013), NumCosmo4 (Doux et al. 2018) and CAMB5

(Lewis & Bridle 2002). However, none of these meets

all the necessary capabilities for cosmological analysis

with the next generation of dark energy experiments.

Faced with these challenges, the Dark Energy Science

Collaboration (DESC), one of the science collaborations

of the Large Synoptic Survey Telescope (LSST), has

built a comprehensive software tool that satisfies the

needs of the next generation of cosmological analysis:

the Core Cosmology Library6 (CCL). CCL is a software

library providing the infrastructure to make theoreti-

cal predictions that are validated to a well-documented

high degree of numerical accuracy for the purpose of

constraining cosmology. In the context of this work, we

establish the accuracy of CCL predictions by comparing

them to predictions from external packages. Thus, what

we quantify is the level of agreement between indepen-

dent pipelines.

CCL computes standard cosmological functions includ-

ing the Hubble parameter, cosmological distances, den-

sity parameters, the halo mass function, halo bias and

linear growth functions. It calculates the matter power

spectrum using various methods including common ap-

proximations, by calling external software such as CLASS

(Blas et al. 2011), or emulators, such as the “Cosmic

Emulator” of Lawrence et al. (2017). It computes 2-

point angular power spectra and correlation functions

from various probes, going beyond the Limber approx-

imation. While CCL incorporates state-of-the-art mod-

els available in the literature, this manuscript is mainly

concerned with documenting their implementation and

numerical accuracy, but does not address the physical

accuracy of each model, for which we point the reader

to the relevant references in the following sections. To

our knowledge, no other adaptable, up-to-date and pub-

licly available software tool for state-of-the-art cosmo-

3 http://www.astropy.org
4 https://numcosmo.github.io
5 https://camb.info
6 publicly available at https://github.com/LSSTDESC/CCL

https://www.darkenergysurvey.org
http://kids.strw.leidenuniv.nl
http://www.astropy.org
https://numcosmo.github.io
https://camb.info
https://github.com/LSSTDESC/CCL
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logical predictions has undergone such a rigorous vali-

dation process as described in this manuscript.

CCL’s overall structure is illustrated in Figure 1. Our

implementation has support for spatially flat and curved

Λ-Cold Dark Matter (ΛCDM) cosmologies, and wCDM

cosmologies with the option of using a time-dependent

equation of state. It also allows for cosmologies with

multiple massive neutrino species and can be linked

to external software for modified gravity predictions

(hi CLASS, Zumalacárregui et al. 2017). While CCL was

built with LSST in mind, the goal is to produce a pub-

licly available, user-friendly, well-documented, adapt-

able software that can be used in any theoretical model-

ing work in cosmology. This manuscript describes ver-

sion 1.0.0 of the library.

The validation procedure to assess the numerical ac-

curacy of each CCL feature is key in this work. We com-

pare the CCL evaluation of each observable or function

to an independent implementation from a stand-alone

software package. For each prediction, we define an ac-

curacy metric which surpasses our expected needs for

accurate cosmological constraints and document the re-

sults obtained in this manuscript. Ultimately, the nu-

merical uncertainties in the different CCL functions prop-

agate to our predictions for correlation functions, which

we expect to be one of the main summary statistics used

in the LSST cosmology analyses (similarly to current

DES and KiDS efforts). Hence, our overall goal in this

work is to demonstrate that correlation functions ob-

tained by CCL are accurate to within a fraction of the

expected observational uncertainties for the models and

in the range of scales of interest to LSST. In addition,

we ensure that any prediction of the two-point statistics

of the distribution of matter, necessary for predicting

cross-correlations between probes, has a well-established

accuracy.

This paper is organized as follows. Section 2 describes

the cosmological models and observables supported by

CCL. In Section 3, we describe the details of the im-

plementation of the quantities introduced in Section 2.

Section 4 provides details of the validation procedure,

the tests performed and the accuracy achieved. Section

5 gives brief guidelines for the usage of CCL, although we

direct the reader to the software online repository, docu-

mentation and user manual for further information. We

conclude in Section 6 with an outlook towards the in-

tegration of CCL in the LSST DESC pipelines, and we

outline future additions to the software.

2. COSMOLOGICAL MODELS AND

OBSERVABLES

The overarching goal of CCL is to allow seamless in-

tegration of different cosmological models of interest

to LSST. The cosmological models assume a homoge-

neous and isotropic space-time metric, and an inflation-

ary model for the primordial universe described by a

power-law with spectral index ns, and amplitude As de-

fined at a pivot scale of k0 = 0.05 Mpc−1. The cosmo-

logical components include the matter density param-

eter Ωm, which is the sum of the baryonic component

Ωb and the cold dark matter component Ωc, the dark

energy density7 ΩΛ, the radiation density Ωγ (excluding

neutrinos), the curvature density ΩK , and the neutrino

density of both mass-less and massive neutrinos, given

by Ων,rel and Ων,m respectively. Unless otherwise spec-

ified, we refer to these densities at the present. The

current expansion rate is given by the Hubble constant,

H0 = 100 h km s−1 Mpc−1. The normalization of the

density fluctuations is established either in terms of As
or in terms of the RMS variance in spheres of 8hMpc−1

today, σ8.

The following set of models is supported in CCL:

• Flat ΛCDM cosmology governed by the parame-

ters Ωb, Ωm, H0, ns, As or σ8, and a cosmological

constant dark energy model with equation-of-state

w = −1.

• The Chevallier-Polarski-Linder (CPL) model

for dark energy, which adopts the following

parametrization for w as a function of the scale

factor, a (Chevallier & Polarski 2001 and Linder

2003),

w(a) = w0 + wa(1− a). (1)

We note that models with constant w are simply

a subset of the above, where wa = 0.

• Non-zero curvature (K), so that the curvature

density parameter ΩK = 1−∑i Ωi, where i refers

to each of the density components.

• Extra relativistic species, contributing to Neff (the

effective number of neutrinos).

• Massive neutrinos specified by either the sum of

their masses Σmν (which maps on to the den-

sity parameter Ων,m above), or by the individ-

ual masses of each of the three neutrino species.

This feature is allowed alongside non-zero curva-

ture, extra relativistic species, and evolving dark

energy.

7 While we adopt ΩΛ as notation, this quantity represents the
dark energy density also in the case where dark energy is described
by a dynamical field.
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Figure 1. CCL structure flowchart. CCL is written in C with a python interface. CCL routines calculate basic cosmological
functions such as the Hubble function, density parameters, distances and growth function. The library uses various methods to
compute the matter-power spectrum, including CLASS, the “Cosmic Emulator” developed by Lawrence et al. (2017), and other
common approximations. CCL computes 2-point angular power spectra and correlation functions from various probes, including
typical astrophysical systematics and accounting for user-provided or pre-coded survey specifications.

• An arbitrary, user-defined modified growth func-

tion (see description in Section 2.2). This can be

combined with a model that otherwise contains

non-zero curvature and evolving dark energy.

In the particular case of cosmologies with massive neu-

trinos, if the user specifies a sum of masses, Σmν , CCL

will by default split Σmν into three neutrino masses

which are consistent with the normal hierarchy (see, e.g.

Lattanzi & Gerbino 2017 for a review). However, the

user can alternatively ask for Σmν to be split either

into masses consistent with the inverted hierarchy, or

into equal masses. Each neutrino species is then checked

for whether it is non-relativistic (massive) at z = 0, and

this information is used in combination with the user-

provided value of Neff to set the number of relativistic

neutrino species.

The following sub-sections describe the cosmological

predictions implemented in CCL. Not all CCL features

are available for the models described in this section.

For a guide to which predictions are available for each

model, see Table 1. Note that if users install their own

version of the CLASS software (for example, hi CLASS,

Zumalacárregui et al. 2017), CCL can then make pre-

dictions for a more extended set of cosmologies. Users

should take care to understand the validity of the CCL

assumptions for their own models.

2.1. Background cosmology

The models that are specified above map directly onto

cosmological observables such as the expansion rate of

the Universe, which is parameterized through the Hub-

ble parameter as

H(a)

H0
= a−3/2

(
Ωm + ΩΛa

−3(w0+wa) exp[3wa(a− 1)] +

ΩKa+ (Ωγ + Ων,rel)a
−1 + Ω̃ν,m(a)a3

) 1
2

, (2)

and is a function of the scale factor and of the energy

density in the different components today. In this ex-

pression, we have assumed the CPL parameterization

described above for the dark energy equation of state

and we have defined Ω̃ν,m(a) ≡ ρ−1
critρν,m(a) as the frac-

tional energy density of massive neutrinos as a function

of time, where ρcrit is the critical density of the Universe

today.

In general, the density parameter ΩX(a) of a given

species X at a given time is defined in terms of the

physical background densities ρ̄X(a) via ΩX(a) ≡
ρ−1

crit(a)ρ̄X(a), where the critical density of the Universe

at a given time is

ρcrit(a) = (8πG)
−1

3c2H2(a) = ρcritH
−2
0 H2(a). (3)

As an example, the physical density of matter is given

by

ρ̄m(a) = ρ̄ma
−3 = ρcritΩma

−3, (4)
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Table 1. Cosmologies implemented in CCL and observables supported for each of them. Note that the only reason why angular
power spectra appear not to be supported in non-flat cosmologies is that the hyperspherical Bessel functions are currently not
implemented, although their impact is fairly limited. Likewise, number counts power spectra are strictly not supported in the
presence of massive neutrino cosmologies due to the scale-dependent growth rate that affects the redshift-space distortions term,
even though the impact of this is also small for wide tomographic bins. The halo model can make matter power spectrum
predictions for all cosmologies, but should not be used for massive neutrino models because the current version does not
distinguish between the cold matter, relevant for clustering, and all matter. Finally, we note that CCL can make predictions for
the growth of perturbations for some modified gravity models through a user defined ∆f(a) as detailed in Section 2.2, and that
other extensions are supported via integration of external modified gravity codes.

Observable/Model flat ΛCDM ΛCDM+K ΛCDM + mν wCDM

Distances X X X X

Growth function X X X X

Pm(k, z) X X X X

Halo Mass Function X X X X

Cl, number counts X X X X

Cl, weak/CMB lensing X X X X

Correlation function X X X X

Halo model X X X X

and its density parameter is

Ωm(a) = ΩmH
2
0a
−3H−2(a). (5)

Moreover, CCL allows for comoving physical densities

ρ̄X,com(a) = ρ̄X(a)a3 to be extracted, which in the

case of matter reduces to a time-independent ρ̄m,com =

ρcritΩm. We include bars for ρX to distinguish from

spatially-varying densities in later sections.

The specific case of Ω̃ν,m(a) in Eq. (2) is calculated

via

Ω̃ν,m(a) =
7

8

Nν∑
i=1

4σB
cρcrit

(
T eff
ν

a

)4 ∫ ∞
0

dxx2

√
x2 + (m̃i)

2

exp(x) + 1
.

(6)

Here, σB is the Stefan-Boltzmann constant, c is the

speed of mass-less particles, ρcrit is the present critical

density, and T eff
ν is the present effective temperature of

the massive neutrinos. T eff
ν is related to the tempera-

ture of the CMB via T eff
ν = TCMBTNCDM, where TNCDM

is a dimensionless factor (' 1) used by e.g. CLASS to

set the ratio
∑
mν/Ων,m to its experimentally measured

value. Note that TNCDM is used to modulate the effec-

tive temperature of massive neutrinos only; the temper-

ature of relativistic neutrinos follows the usual relation

in which Tν = TCMB

(
4
11

)1/3
. Finally, m̃i is a per-

species mass-dependent dimensionless constant, given

by m̃i = mi
νc

2a/(kBT
eff
ν ) where kB is the Boltzmann

constant.

Fitting models to cosmological observables requires

predicting cosmological distances for a given model. We

consider the comoving radial distance, which is calcu-

lated via a numerical integral as

χ(a) = c

∫ 1

a

da′

a′2H(a′)
. (7)

The comoving angular diameter distance is then com-

puted in terms of the comoving radial distance,

r(χ) =


K−1/2 sin(K1/2χ) K > 0

χ K = 0

|K|−1/2 sinh(|K|1/2χ) K < 0

(8)

where K ≡ ΩKH
2
0 c
−2 is the curvature. The angular

diameter distance is given by dA = a r(χ(a)), and the

luminosity distance is dL = r(χ(a))/a, leading to the

familiar relation dA = a2dL. The CCL suite also has the

functionality to compute the distance modulus, defined

as

µ = 5 log10(dL/pc)− 5, (9)

along with a(χ), the inverse function of χ(a).

2.2. Growth of perturbations

In conjunction with the expansion rate, the growth

history of the Universe can allow us to distinguish be-

tween cosmological models. To compute the linear

growth factor of matter perturbations, D(a), CCL solves

the following differential equation:

d

da

(
a3H(a)

dD

da

)
=

3

2
Ωm(a)aH(a)D, (10)
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using a Runge-Kutta Cash-Karp algorithm. We define

g(a) ≡ D/a and adopt as initial conditions g(a) = 1 and

g′(a) = 0 at sufficiently high redshift, during the matter-

dominated era. CCL simultaneously computes the loga-

rithmic growth rate f(a), defined as:

f(a) ≡ d lnD

d ln a
. (11)

CCL provides functions that return the growth normal-

ized either to D(a = 1) = 1 or to D(a � 1) → a. It

employs an accelerated spline that is linearly spaced in

the scale factor to interpolate the growth functions (for

more details, see Section 3). The growth calculations

cover flat and curved ΛCDM and wCDM cosmologies.

However, it should be noted that the above treatment is

ill-defined in the presence of massive neutrinos, and at-

tempts to compute the growth rate in cosmologies with

massive neutrinos will produce an inconsistency between

growth predictions and the matter power spectrum (Sec-

tion 2.3), for example.

Finally, CCL allows for growth predictions with an al-

ternative ‘modified gravity’ cosmological model defined

by a regular curved wCDM background as well as a user-

defined ∆f(a), such that the true growth rate in this

model is given by

f(a) = f0(a) + ∆f(a), (12)

where f0(a) is the growth rate in the background model.

Note that this model is only consistently implemented

with regards to the computation of the linear growth

factor and growth rates and does not feed into other

observables. This model, and the interpretation of the

predictions given by CCL, should therefore be used with

care.

2.3. Matter power spectrum

Theoretical predictions for cosmological observables

such as galaxy clustering, gravitational lensing and clus-

ter mass functions rely on knowledge of the distribution

of matter from small to large scales in the Universe. To

second order, the distribution of matter density fluctua-

tions at a given wavenumber k and redshift is described

by the matter power spectrum, P (k, z), defined as

〈δ̃(k, z)δ̃(k′, z)〉 = (2π)3P (k, z) δ3
D(k + k′) (13)

where δ̃(k) is the Fourier component of the density field

at a given wavenumber and δ3
D is the Dirac delta func-

tion. P (k, z) has units of volume and a dimensionless

analogue is often defined as

∆2(k, z) ≡ k3

2π2
P (k, z). (14)

At sufficiently large scales (small k), P (k, z) can be

obtained from solving linear perturbation theory equa-

tions. In this case, P (k, z) is referred to as the “linear”

matter power spectrum. At small scales, where pertur-

bation theory breaks down, other approaches based on

numerical simulations are needed. In this more general

case, P (k, z) is referred to as the “non-linear” matter

power spectrum.

CCL implements several different methods for mak-

ing predictions for the matter power spectrum. Two

of those methods, the BBKS (Bardeen et al. 1986) and

Eisenstein & Hu (1998) approximations, are only ac-

curate to within a few per cent and are implemented

for validation purposes mainly. These approximations

provide analytical expressions for the transfer function,

T (k), which is related to the matter power spectrum by

∆2(k) ∝ T 2(k)k3+ns . There are two alternative ways

to normalize the power spectrum. One option, which

establishes a normalization at z = 0, is to provide a

value for σ8. The second option is to set the normaliza-

tion at high redshift by giving a value for the amplitude

of primordial fluctuations, As. From the point of view

of the CCL implementation, if the user provides σ8, CCL

also calculates the corresponding As for the specified

cosmology.

The default CCL implementation uses the CLASS algo-

rithm Blas et al. (2011) to obtain predictions for P (k, z).

CLASS uses a Boltzmann solver to compute the linear

power spectrum and also includes the halofit (Smith

et al. 2003; Takahashi et al. 2012) fitting function for the

non-linear spectrum. In addition, CCL can also generate

P (k, z) predictions by emulation of cosmological numer-

ical simulations using the “Cosmic Emulator” developed

by Lawrence et al. (2017).

We also provide a basic halo model calculation of the

non-linear matter power spectrum which uses the in-

cluded halo bias, halo mass function and halo density

profiles (see Sections 2.5, 2.6 and 2.7). The power spec-

trum calculated via this method is not accurate enough

for precision cosmology, with deviations of as great as

50 per cent compared to numerical simulations, but is

pedagogically useful and we envisage to expand its func-

tionalities to make it more realistic in the future.

None of the above methods account for the impact of

baryonic physics on the distribution of matter, which is

known to exceed the per cent level at scales k & 1 Mpc−1

(van Daalen et al. 2011; Vogelsberger et al. 2014; Hell-

wing et al. 2016; Springel et al. 2017; Chisari et al. 2018)

and can affect the extraction of cosmological parameters

(Semboloni et al. 2011, 2013; Mohammed & Seljak 2014;

Eifler et al. 2015; Mohammed & Gnedin 2017). To ac-

count for this effect, we incorporate in CCL an effective
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parametrization (Schneider & Teyssier 2015) of the re-

distribution of matter as a consequence of feedback from

Active Galactic Nuclei and adiabatic cooling. We give

an overview of each method to predict the matter power

spectrum in what follows.

BBKS approximation.—CCL implements the ana-

lytical BBKS approximation to the transfer function

(Bardeen et al. 1986), given by

T (q) =
ln[1 + 2.34q]

2.34q
× (15)

[1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4]−0.25

where q is defined as follows (Sugiyama 1995)

q ≡ k/{Ωmh2e−Ωb[1+
√

2h/Ωm]Mpc−1}, (16)

where k has units of Mpc−1. The BBKS power spectrum

option is primarily used as a precisely-defined input for

testing the numerical accuracy of CCL routines (as de-

scribed in Section 3), and it is not recommended for

other uses.

Eisenstein & Hu approximation.—CCL also provides

an approximation to the matter power spectrum as im-

plemented by Eisenstein & Hu (1998) (we refer the

reader to this paper for a detailed discussion of the fit-

ting formulae).8

CLASS.—The default configuration of CCL adopts pre-

dictions for the linear and non-linear matter power spec-

trum from the publicly available software (Blas et al.

2011). CLASS uses a Boltzmann solver to compute the

linear power spectrum and makes predictions for the

non-linear power spectrum using the halofit prescrip-

tion of Takahashi et al. (2012).

Cosmic emulator.—An emulator method trained on

numerical simulations (Lawrence et al. 2017) provides

accurate predictions for the non-linear matter power

spectrum for z ≤ 2 and in the wavenumber range

k = [10−3, 5] Mpc−1. The allowed range of cosmologi-

cal parameters that can be passed to the emulator is as

8 Note that the implementation in CCL modifies Eq. 5 of Eisen-
stein & Hu (1998) using a−1 = 1+z instead of the approximation
a−1 ∼ z. The difference in the resulting power spectra is negligi-
ble, but larger than 1 part in 104 for k < 10hMpc−1.

follows9:

0.12≤Ωmh
2 ≤ 0.155,

0.0215≤Ωbh
2 ≤ 0.0235,

0.7≤σ8 ≤ 0.9,

0.55≤h ≤ 0.85,

0.85≤ns ≤ 1.05,

−1.3≤w0 ≤ −0.7,

−1.73≤wa ≤ −0.7,

0.0≤Ων,mh
2 ≤ 0.01. (17)

In the case of the emulator, the effective number of rela-

tivistic neutrino species is set to Neff = 3.04 and Ωγ = 0.

In Lawrence et al. (2017), the neutrino component of

the power spectrum is not simulated, but either linearly

evolved and added to the simulated power spectra at

low redshift, or accounted for by a scale-dependent cor-

rection to the growth function. The typical accuracy of

the emulator with respect to simulated power spectra

is at the < 3% level and depends on the cosmological

model. More details on this method and its accuracy

can be found in Upadhye et al. (2014); Castorina et al.

(2015); Heitmann et al. (2016).

Baryonic correction model (BCM).—CCL incorpo-

rates the impact of baryons on the total matter power

spectrum via the BCM of Schneider & Teyssier (2015).

The main consequences of baryonic processes are: to

suppress the power spectrum at intermediate scales (k ∼
a few Mpc−1) due to the heating and ejection of gas by

Active Galactic Nuclei feedback, and to enhance it at

smaller scales due to adiabatic cooling. To account for

these effects, BCM uses an effective decomposition for

the impact of gas ejection (G) and the enhancement of

the small scale profile due to star formation (S) to es-

timate the fractional effect of baryonic processes on the

dark matter-only power spectrum (PDMO):

PBCM(k, z) = PDMO(k, z)G(k|Mc, ηb, z)S(k|ks) (18)

Three effective parameters govern the contribution of

baryonic processes to modifying the total matter power

spectrum:

• log10[Mc/(M�/h)]: the mass of the clusters re-

sponsible for feedback, which regulates the amount

of suppression of the matter power spectrum at in-

termediate scales;

• ηb: a dimensionless parameter which determines

the scale at which suppression peaks;

9 wa and w0 are constrained jointly to be 0.3 ≤ (−w0 −wa)1/4.
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• and ks [hMpc−1]: the wavenumber that deter-

mines the scale of the stellar distribution of matter

in the center of halos.

If these parameters are not specified by the user, CCL

assumes the default parameters of Schneider & Teyssier

(2015), calibrated through different comparisons with

observations and simulations in that work.

2.4. Two-point correlators

The matter power spectrum is one of the necessary

components to produce theoretical expectations for the

two-point correlators of pairs of quantities (fields) that

trace the matter density field in the Universe. In this

section, we will define these fields on the sky, such as

galaxy positions or galaxy shapes. These fields can be

classified in terms of their spin s under rotations on the

plane tangent to the sphere. In general a spin-s field

is defined by two real-valued functions of the spherical

coordinates a1(n̂) and a2(n̂) (e.g. γ1 and γ2 for weak

lensing or the Stokes parameters Q and U in the case

of polarized intensity), from which one can form the

complex field a = a1 + ia2. For galaxy clustering, the

galaxy density is a spin-0 field described by a scalar.

Spin-s quantities can be decomposed into their har-

monic coefficients sa`m through a spherical harmonic

transform (Zaldarriaga & Seljak 1997; Reinecke 2011):

sa`m =

∫
dn̂ a(n̂) sY

∗
`m(n̂), a(n̂) =

∑
`m

sa`m sY`m(n̂)

where sY`m are the spin-weighed spherical harmonics.

The harmonic coefficients can then be associated with

parity-even and parity-odd components (E-modes and

B-modes respectively) as10

E`m = −1

2
[ sa`m + (−1)s −sa`m]

iB`m = −1

2
[ sa`m − (−1)s −sa`m] , (19)

where −sa`m is defined as

−sa`m =

∫
dn̂ a∗(n̂)−sY

∗
`m(n̂).

In what follows we will focus on scalar (s = 0) quan-

tities such as the overdensity of source number counts

or the CMB lensing convergence, and on spin-2 fields

10 We note that for spin-0 quantities the minus sign preceding
these equations is usually omitted, and we do so in what follows.
Also, all scalar fields discussed here are real-valued, and therefore
have zero B-modes.

such as the lensing shear. We will also distinguish be-

tween tracers (fields observed on the sky, such as num-

ber counts in a redshift bin, shear, or CMB temper-

ature fluctuations) and contributions to the total ob-

served fluctuations of these tracers (such as the biased

matter density term in number counts, redshift-space

distortions, magnification, etc.).

2.4.1. Angular power spectra

The angular power spectrum Cab` between two tracers

a and b is defined as

〈a`mb∗`m〉 ≡ Cabδ``′δmm′ , (20)

where a`m and b`m can be either the E-mode or B-mode

component of the corresponding field. In what follows

we will only work with fields for which the B-modes

are exactly or nearly 0, and which we will take to be

identically 0. Therefore all equations refer to the E-E

power spectrum. In general, this power spectrum can

be written as:

Cab` = 4π

∫ ∞
0

dk

k
PΦ(k)∆a

` (k)∆b
`(k), (21)

where PΦ(k) is the dimensionless power spectrum of

the primordial curvature perturbations, and ∆a and ∆b

are the transfer functions corresponding to these trac-

ers. Each transfer function will receive contributions

from different terms. CCL supports three types of trac-

ers: number counts, galaxy shape distortions and CMB

lensing convergence, with the following contributions11:

Number counts.—The transfer function for number

counts can be decomposed into three contributions:

∆NC = ∆D + ∆RSD + ∆M, where

• ∆D is the standard density term proportional to

the matter density:

∆D
` (k) =

∫
dz pz(z) b(z)Tδ(k, z) j`(kχ(z)), (22)

where j`(x) is `-th order spherical Bessel func-

tion, Tδ is the matter overdensity transfer func-

tion, b(z) is the linear clustering bias for this tracer

and pz(z) is the normalized distribution of sources

in redshift. The fluctuations in the number den-

sity of sources in different redshift bins are there-

fore treated by CCL as different tracers. Note that

CCL does not currently support non-linear or scale-

dependent bias, but future releases will do so un-

der a number of schemes, including perturbative

11 Note that we use units where the speed of light is c = 1
throughout.
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approaches as implemented in, e.g., McEwen et al.

(2016).

It is also worth noting that the matter overdensity

transfer function Tδ in Eq. 22 is not the same as

the transfer function used in Section 2.3. While

T (k) is defined as (Eisenstein & Hu 1998)

T (k) =
δ(k, z = 0)

δ(k, z =∞)

δ(k = 0, z =∞)

δ(k = 0, z = 0)
, (23)

all subscripted transfer functions TX used here are

defined as the ratio between the subscript quantity

X and the primordial curvature perturbations:

X(k, z) = TX(k, z) Φ(k). (24)

• ∆RSD is the linear contribution from redshift-

space distortions (RSDs):

∆RSD
` (k) =

∫
dz

(1 + z)pz(z)

H(z)
Tθ(k, z)j

′′
` (kχ(z)),

(25)

where Tθ(k, z) is the transfer function of θ, the di-

vergence of the comoving velocity field, and j′′` is

the second order derivative of the spherical Bessel

function, j`. Note that the RSD contribution to

number counts is computed by CCL assuming a

linear-theory relation between the matter overden-

sity and peculiar velocity fields, mediated by the

scale-independent growth rate f (Eq. 11). While

this should not be problematic for wide photomet-

ric redshift bins and standard cosmological mod-

els, users should exercise caution when interpret-

ing results for narrow window functions or exotic

cosmologies. Additionally, number count tracers

with RSD in cosmologies with massive neutrinos

are not currently supported.

• ∆M is the contribution from lensing magnification:

∆M
` (k) = −`(`+ 1)

∫
dz

H(z)
WM(z)

Tφ+ψ(k, z)j`(kχ(z)), (26)

where Tφ+ψ is the transfer function for the

Newtonian-gauge scalar metric perturbations, and

WM is the magnification window function:

WM(z) ≡
∫ ∞
z

dz′ pz(z
′)

2− 5s(z′)
2

r(χ′ − χ)

r(χ′)r(χ)
.

(27)

Here, s(z) is the logarithmic derivative of the num-

ber of sources with magnitude limit, and r(χ) is

the angular comoving distance (see Eq. 8).

Note that CCL does not currently compute relativistic

corrections to number counts other than magnification

bias (Challinor & Lewis 2011; Bonvin & Durrer 2011).

Although these will be included in the future, their con-

tribution to the total fluctuation is largely sub-dominant

(see Alonso et al. 2015 and the two references above),

and therefore it is safe to ignore them for our purposes.

Correlated galaxy shapes.—The transfer function for

correlated galaxy shapes (intrinsic and lensed) is decom-

posed into two terms: ∆SH = ∆WL + ∆IA, where

• ∆L is the standard lensing (“cosmic shear”) con-

tribution:

∆L
` (k) = −1

2

√
(`+ 2)!

(`− 2)!

∫
dz

H(z)
WL(z)Tφ+ψ(k, z)

j`(kχ(z)), (28)

where WL is the lensing kernel, given by

WL(z) ≡
∫ ∞
z

dz′pz(z
′)
r(χ′ − χ)

r(χ′)r(χ)
. (29)

• ∆IA is the transfer function for intrinsic galaxy

alignments. CCL supports the so-called “non-linear

alignment model” (NLA), in which the intrinsic

galaxy inertia tensor is proportional the local tidal

tensor (Catelan et al. 2001; Hirata & Seljak 2004;

Hirata et al. 2007):

∆IA
` (k) =

√
(`+ 2)!

(`− 2)!

∫
dz pz(z) bIA(z) fIA(z)

Tδ(k, z)
j`(kχ(z))

[kχ(z)]2
. (30)

Here, bIA is the so-called alignment bias, and fIA is

the fraction of aligned galaxies in the sample. No-

tice that bIA(z) absorbs the typical normalization

factors used in the literature for intrinsic align-

ment amplitude and redshift evolution. It is thus

not to be confused with C1 or AIA, typical pa-

rameters for adopted in works such as van Uitert

et al. (2018); Joudaki et al. (2018); Hildebrandt

et al. (2017). In particular, the product bIA fIA

is equivalent to the quantity defined in Equation

8 of Hildebrandt et al. (2017). The NLA model

has limitations in the modelling of small-scale cor-

relations (Singh et al. 2015) and does not predict

any B-mode contributions that can arise from non-

linearities at such scales. However, it is a com-

monly adopted approximation in the current liter-

ature and going beyond it is outside of the scope of

this work, though future versions of LSST DESC

software will provide alternative modeling options

(Blazek et al. 2017).
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CMB lensing.—The transfer function for the lensing

convergence, κ, of a given source plane at redshift z∗
receives only one contribution, given by

∆κ
` (k) = −`(`+ 1)

2

∫ χ∗

0

dz

H(z)

r(χ∗ − χ)

r(χ)r(χ∗)
Tφ+ψ(k, z),

(31)

where χ∗ ≡ χ(z∗).
It is worth noting that the equations above should be

modified for non-flat cosmologies by replacing the spher-

ical Bessel functions j` with their hyperspherical coun-

terparts (Kamionkowski & Spergel 1994). These are

currently not supported by CCL, and their impact is

mostly relevant on low multipoles. The library also as-

sumes a factorizable matter power spectrum at unequal

times Pδ(k, z1, z2) = Tδ(k, z1)Tδ(k, z2) 2π2PΦ(k). This

approximation is widely used in the literature, but fur-

ther work is needed to assess its impact on LSST ob-

servables (Kitching & Heavens 2017). Furthermore, CCL

assumes a relation between transfer functions Tδ, Tθ and

Tφ+ψ that is strictly only valid in vanilla ΛCDM12:

Tδ = − 1 + z

H(z)f(z)
Tθ = − k2

3H2
0 Ωm

Tφ+ψ

1 + z
. (32)

These approximations will be revisited in future versions

of the library.

2.4.2. Correlation functions

Fields are correlated in configuration space, and the

corresponding correlators are called correlation func-

tions. Let a and b be two fields with spins sa and sb. We

start by defining ã(n̂1) and b̃(n̂2) as the fields a and b

rotated such that the x-axis of the tangential coordinate

systems at directions n̂1 and n̂2 become aligned with the

vector connecting both points. We can then define two

correlation functions:

ξab+ (θ) ≡
〈
ã(n̂1)b̃∗(n̂2)

〉
, ξab− (θ) ≡

〈
ã(n̂1)b̃(n̂2)

〉
,

where n̂1 · n̂2 ≡ cos θ.

ξ± can be related to the angular power spectra (Eq.

20) as

ξab± =
∑
`

2`+ 1

4π
(±1)sb Cab±` d`sa,±sb(θ), (33)

where d`mm′ are the Wigner-d matrices (Ng & Liu 1999;

Chon et al. 2004) and we have defined the power spectra

Cab±` ≡
(
CaEbE` ± CaBbB`

)
+i
(
CaBbE` ∓ CaEbB`

)
, (34)

12 Note that the transfer functions are defined here for the full
non-linear density field, as opposed to the more common linear
transfer functions.

which reduces to the EE power spectrum when all B-

modes are 0.

Note that, as scalar quantities are real, any correlation

involving at least one spin-0 field only has one unique

correlation function. In these cases, the Wigner-d matri-

ces can also be expressed in terms of associated Legendre

polynomials Pm` , and therefore Eq. (33) becomes

ξab(θ) =
∑
`

2`+ 1

4π
Cab`

√
(`− sa)!

(`+ sa)!
P sa` (cos θ), (35)

where we have assumed sb = 0.

In the flat-sky approximation we can take the small-

scale limit `� sa, sb and approximate

d`sasb(θ) −→ Jsa−sb(`θ), (36)

where Jα(x) is the Bessel function of order α. Eq. (33)

then becomes13

ξab± (θ) = (±1)
sb

∫
d` `

2π
Cab±` Jsa∓sb(`θ). (37)

In summary, for spins 0 and 2, the three relevant cases

for the cosmological observables supported by CCL are:

• sa = sb = 0 (e.g. galaxy-galaxy, galaxy-κ and

κ-κ):

ξab(θ) =
∑
`

2`+ 1

4π
Cab` P`(cos θ) (full-sky) (38)

=

∫ ∞
0

d` `

2π
Cab` J0(`θ) (flat-sky) (39)

• sa = 2, sb = 0 (e.g. galaxy-shear, κ-shear):

ξab(θ) =
∑
`

2`+ 1

4π
Cab` d

`
2,0(θ) (full-sky) (40)

=

∫ ∞
0

d` `

2π
Cab` J2(`θ) (flat-sky) (41)

• sa = sb = 2 (e.g. shear-shear):

ξab± (θ) =
∑
`

2`+ 1

4π
Cab` d

`
2,±2(θ) (full-sky) (42)

=

∫ ∞
0

d` `

2π
Cab` J2∓2(`θ) (flat-sky) (43)

In the following sections, we will specifically refer to the

clustering correlation function in Eq. (39) as ξgg.

13 See the weak lensing review by Bartelmann & Schneider
(2001) and Joachimi & Bridle (2010).
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2.4.3. Three-dimensional spatial correlation function

In addition to the angular correlation functions, CCL

can also compute the three-dimensional spatial correla-

tion function, ξ(r), from the following transformation of

the matter power spectrum:

ξ(r) =
1

2π2

∫ ∞
0

dk k2P (k)
sin(kr)

kr
. (44)

In the future CCL will be expanded to incorporate the

calculation of the higher-order multipoles needed to

characterize the redshift-space three-dimensional corre-

lation function in the presence of RSDs.

2.5. Halo mass function

Being able to calculate the halo abundance as a func-

tion of mass is a necessary step to constrain cosmology

with probes such as galaxy clusters (Paranjape 2014).

Modern cosmology makes extensive use of fitting func-

tions in order to predict the evolution of halo abun-

dances, which necessarily require derivation from cos-

mological simulations (Tinker et al. 2008, 2010; Angulo

et al. 2012). We implement halo mass functions with pa-

rameters fit to these simulations. The calculation of the

halo mass function focuses around the spherical over-

density method of halo finding, in which a halo can be

defined as a region of average density

ρ̄(r∆) = ∆v × ρ̄m, (45)

equal to the overdensity parameter ∆v times the mean

background density of the universe at a given redshift,

ρ̄m(z), and with radius r∆. Within the literature, the

choice of ∆v can vary considerably, as observations fo-

cusing on the compact cores of halos often take much

larger values of ∆v than the fiducial definition in most

halo clustering studies, ∆v = 200. We note that an al-

ternative definition exists which utilizes the critical den-
sity of the universe, ρcrit, instead of the mean in Eq.

(45); this introduces a simple conversion factor between

the two definitions that must be accounted for. CCL only

accepts overdensity parameters with respect to the mean

matter density, but we plan to allow for self-consistent

handling of critical density based definitions in the fu-

ture.

The halo mass function is defined as

dn

dM
= f(σ)

ρ̄m

M

d lnσ−1

dM
, (46)

where n is the number density of halos of a given massM

associated with the RMS variance of the matter density

field, σ2, at a given redshift and f is a fitting function14.

14 Not to be confused with the linear growth rate of structure
defined in Eq. (11).

CCL makes predictions for the mass function in logarith-

mic mass bins, dn/d log10M , where the input is the halo

mass M and scale factor a.

The halo mass M is related to σ by first computing the

radius R that would enclose a mass M in a homogeneous

Universe at z = 0:

M =
H2

0

2G
R3 → M

M�
= 1.162× 1012Ωmh

2

(
R

1 Mpc

)3

.

(47)

The RMS density contrast in spheres of radius R can

then be computed as

σ2
R =

1

2π2

∫
dk k2 Plin(k) W̃ 2

R(k) (48)

where Plin(k) is the linear matter power spectrum at

z = 0 and W̃ (kR) is the Fourier transform of a spherical

top hat window function,

W̃R(k) =
3

(kR)3
[sin(kR)− kR cos(kR)]. (49)

This is commonly related in terms of the mass inside

of the Lagrangian scale of the halo, using the following

transformation:

R = (3M/4πρ̄m)1/3. (50)

As a consequence, one can also define σM as the RMS

variance of the density field smoothed on some scale M ,

analogously to Eq. (48).

One commonly used halo mass function definition

within the literature is the Tinker et al. (2010) fitting

function. This fitting function has been developed us-

ing collisionless N -body simulation data, using halos

identified by spherical overdensities. This is an exten-

sion of the Tinker et al. (2008) halo mass function,

which is also included within CCL as a comparative op-

tion. This fitting function assumes no change with re-

spect to cosmological parameters except for changes in

σM (z)15. Further, it includes a redshift scaling which is

assumed to sharply end at a redshift of z = 3. This

halo mass function is calibrated within the range of

1010.5hM� ≤M ≤ 1015.5hM� at a redshift of z = 0.

For comparison purposes, we also have included the

results of Angulo et al. (2012), which uses the Millen-

nium XXL simulation in order to study galaxy cluster

scaling relations. As part of their study, they calculated

their own best fit parameters for the Tinker et al. (2010)

15 Tinker et al. (2008) stated that the difference in the mass
function between adopting WMAP1 and WMAP3 cosmologies was
within 5%.
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fitting function. While this additional halo mass func-

tion is available, it has not been extended to a broad

range of overdensity parameter ∆v, nor has it been ex-

tended beyond a redshift of z = 0.

The Tinker et al. (2008) fitting function uses the fol-

lowing parameterisation:

f(σ) = A
[(σ
b

)−a
+ 1
]
e−c/σ

2

, (51)

where A, a, b, and c are fitting parameters that have

additional redshift scaling. This basic form is modified

for the Angulo et al. (2012) formulation. The resulting

form is

f(σ) = A
[( b
σ

+ 1
)−a]

e−c/σM
2

, (52)

where the only change is in the formulation of the second

term. Note that the fitting parameters in the Angulo

et al. (2012) formulation do not contain any redshift

dependence and the use of it is primarily for testing and

benchmarking purposes.

The Tinker et al. (2010) model parameterizes the halo

mass function in terms of the peak height, ν ≡ δc/σM ,

where δc = 1.686 is the critical density for collapse

(taken to be independent of cosmological model). The

function is then re-expressed as

f(ν) = α[1 + (βν)−2φ]ν2ηe−γν
2/2. (53)

Tinker et al. (2008, 2010) quote 5% accuracy of their

parametrised mass functions, compared to the simula-

tions used to calibrate them. This result is consistent

with the work of Watson et al. (2013), which also finds

a 5% level difference in comparison to the Tinker et al.

(2008) fitting function. Further study will be required

in the future in order to gain per cent level accuracy in

determining the halo mass function.

We note that these halo mass functions, while imple-

mented to high numerical accuracy in CCL, carry their

own uncertainties. It has not been significantly studied

whether the halo mass function is universal with respect

to changes in dark energy parameterisation or, in gen-

eral, any other changes in cosmological parameters.

We also include the mass function from Sheth & Tor-

men (1999):

f(ν) = A

[
1 +

1

(qν2)p

]
e−qν

2/2 , (54)

with p = 0.3, q = 0.707 and A ' 0.21616, where A is

fixed such that the mass function is normalized.

This mass function was fitted to halos measured in

N -body simulations where halos were identified with

a cosmology-dependent overdensity criterion from the

spherical-collapse model (∆v ∼ 300 for Ωm ∼ 0.3

ΛCDM; ∆v ∼ 178 for Ωm ∼ 1). For the cosmology

dependence, we use the fitting-formula of Bryan & Nor-

man (1998)

∆v(z) =
1

Ωm(z)

(
18π2 − 82x− 39x2

)
, (55)

where x = 1 − Ωm(z). In addition, in Sheth & Tormen

(1999) the relation between M and ν was taken to in-

clude the cosmology-dependence of δc(z), which derives

from the spherical-collapse model. For this we use the

fitting formula of Nakamura & Suto (1997):

δc(z) =
3(12π)2/3

20
{1 + 0.012299 log10[Ωm(z)]} . (56)

2.6. Halo bias

An important step in many interpretations of the halo

model is to have a measure of the bias of dark matter

halos, defined as the ratio of the halo power spectrum,

Ph(k), to the linear dark matter power spectrum,

b2(k) =
Ph(k)

Plin(k)
. (57)

This is implemented as a stand-alone function in CCL

and does not currently feed into predictions for galaxy

or halo clustering described in Section 2.4.

As with measures of the halo mass function, high accu-

racy cosmological constraints require the use of numer-

ical simulations to develop fitting functions and emula-

tors. Here, we define halos as in the above sub-section.

CCL implements the halo bias fitting function results

from Tinker et al. (2010), though future improvements

will likely require the use of emulator methods.

The Tinker et al. (2010) model parameterizes the halo

bias in terms of the peak height and the critical density

for collapse (similarly to Eq. 53) as

b(ν) = 1−A νa

νa + δc
a +Bνb + Cνc, (58)

Tinker et al. (2010) found a ∼ 6% scatter when de-

termining the halo bias due to differences in simulations

alone. There is remaining uncertainty to the physical ac-

curacy of this model, as this parameterization does not

consider any impact due to changes in the dark energy

equation of state. As with the halo mass function, stud-

ies will be required to reach accuracy at the per cent

level for any cosmological predictions (e.g. Gao et al.

2005; Schulz & White 2006; Smith et al. 2007; Croton

et al. 2007; Parfrey et al. 2011; Sunayama et al. 2016;

Villarreal et al. 2017; Mao et al. 2018).
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CCL can also make predictions for the halo bias from

Sheth & Tormen (1999),

b(ν) = 1 +
1

δc(z)

[
qν2 − 1 +

2p

1 + (qν2)p

]
, (59)

which can be derived using the peak-background split

applied to Eq. (54). Similar to that equation, p = 0.3,

q = 0.707 and δc(z) is defined in Eq. (56).

2.7. Halo model

In this section we review a basic halo model compu-

tation (Seljak 2000; Peacock & Smith 2000; Cooray &

Sheth 2002) of the cross-correlation between any two

cosmological scalar fields. The calculation only requires

knowledge of the halo profiles of the field in question.

For example, in the case of the matter-density auto

spectrum we need only know the halo density profiles.

For the galaxy spectrum we would require knowledge of

the number of, and distribution of, galaxies as a func-

tion of halo mass (the so-called halo-occupation distri-

bution). In this simple form the halo model is approxi-

mate and makes the assumption that halos are linearly

biased with respect to the linear matter field and also

assumes that halos are spherical with properties that

are determined solely by their mass. For the matter

power spectrum, these assumptions mean that the mat-

ter power spectrum is only accurate to within a factor

of two compared to that measured from numerical sim-

ulations (Mead et al. 2015). It is possible to go beyond

these simplistic assumptions, and we direct the inter-

ested reader to Cooray & Sheth (2002); Smith et al.

(2007); Giocoli et al. (2010); Smith & Markovic (2011)

for this.

The eventual aim for CCL is to have a halo model that

can calculate the auto- and cross-spectra for any cosmo-

logical field combinations with parameters that can be

taken either from numerical simulations or observational

data. So far, we have only implemented the halo model

calculation of the density power spectrum, but we keep

the notation as general as possible in the following.

Consider two three-dimensional cosmological scalar

fields ρi and ρj , the cross power spectrum at a given

redshift can be written as a sum of a two- and a one-halo

term. The two-halo term accounts for power that arises

due to the distribution of halos with respect to one an-

other, while the one-halo term accounts for power that

arises due to the internal structure of individual halos.

These terms are given by

P2H,ij(k) = Plin(k)
∏
n=i,j

[∫ ∞
0

b(M)
dn

dM
Wn(M,k) dM

]
,

(60)

and

P1H,ij(k) =

∫ ∞
0

dn

dM
Wi(M,k)Wj(M,k) dM , (61)

where M is the halo mass, dn/dM is the halo mass func-

tion defined in Eq. (46) and b(M) is the linear halo bias

with respect to the linear matter density field, defined

as the large-scale limit of Eq. (57). The full halo model

power is then simply the sum

PHM,ij = P2H,ij + P1H,ij . (62)

Eqs. (60) and (61) contain the (spherical) Fourier

transform of the halo profile, or halo “window function”:

Wi(M,k) =

∫ ∞
0

4πr2 sin(kr)

kr
ρH,i(M, r) dr , (63)

where ρH,i(M, r) is the radial profile for the field i in a

host halo of mass M . For example, if one is interested in

calculating the matter power spectrum then ρH,i(M, r)

would be the density contrast profile of a halo of mass

M .

By default, in the halo model calculation in CCL we use

the mass function and bias from Sheth & Tormen (1999).

Note that the halo mass function and bias must satisfy

the following properties for the total power spectrum

to have the correct large-scale limit, which is that the

power should revert to the linear power spectrum

1

ρ̄m

∫ ∞
0

M
dn

dM
dM = 1 , (64)

and
1

ρ̄m

∫ ∞
0

Mb(M)
dn

dM
dM = 1 . (65)

If one uses a mass function and bias pair that are related

via the peak-background split formalism (Mo & White

1996; Sheth et al. 2001) then these conditions are au-

tomatically satisfied. In words, these equations enforce

that all matter is associated with a halo. In the conven-

tion used in CCL the units of PHM,ij(k) will be exactly

the units of ρiρj/Mpc3. The units of the Wi are those

of the field ρi multiplied by volume.

For the matter power spectrum, we use the halo pro-

files of Navarro, Frenk, & White (NFW; 1997):

ρH(M, r) ∝ 1

r/rs(1 + r/rs)2
. (66)

The NFW profile is written in terms of a scale radius

rs. The constant of proportionality is fixed by the con-

dition that the halo has total mass M integrated within

the virial radius rv. This radius is in turn set such that
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the halo has a fixed density ∆v with respect to the mean.

Hence, the following relation holds between mass, den-

sity and radius:

M = 4πr3
v∆vρ̄m . (67)

Finally, the scale radius is usually expressed in terms

of the mass-dependent halo concentration parameter

c(M) = rv/rs.

We use the mass-concentration relation from Duffy

et al. (2008) appropriate for the full sample of halos

defined using a virial ∆v criterion

c(M, z) = 7.85

(
M

Mp

)−0.081

(1 + z)−0.71 , (68)

with Mp = 2 × 1012 h−1M�. In order to be consistent

one must use values of ∆v and c(M) that are consistent

with the halo definition used for the halo mass function

and bias. This consistency check is enforced by CCL and

we do not allow mixing of halo properties defined with

different overdensity criteria.

2.8. Photometric redshifts

Redshifts of LSST galaxies will be obtained via pho-

tometry. Therefore, performing any cosmological anal-

ysis which incorporates redshift information requires a

model for the probability of measuring a photometric

redshift zph for an object with true redshift zt. In order

to maintain agnosticism towards the optimal model, and

hence to allow for the future inclusion of advancements

from ongoing research, CCL allows the user to flexibly

input a photometric redshift model. In addition, for

ease of use, CCL provides the option of using a built-

in function for a simple Gaussian photometric redshift

probability distribution.

We define dN/dz as the true redshift distribution of

a sample of galaxies, and dN i/dz as the true redshift
distribution of those galaxies that belong to photometric

redshift bin i. The photometric redshift model can then

be used, for example, when computing dN i/dz as given

by:

dN

dz

i

=
dN
dz

∫ zi+1

zi
dz′p(z, z′)∫ zmax

zmin
dz dNdz

∫ zi+1

zi
dz′p(z, z′)

(69)

where p(z, z′) is the photometric redshift probability dis-

tribution, and zi and zi+1 are the photo-z edges of the

bin in question. In the case of the simple Gaussian pho-

tometric redshift model for which native support is in-

cluded in CCL, p(z, z′) is given by

p(z, z′) =
1√

2πσz
exp

(
− (z − z′)2

2σ2
z

)
, (70)

where the user can set the value of σz, or indeed any

arbitrary function may be provided for p(z, z′).

3. IMPLEMENTATION OF HIGH-ACCURACY

COSMOLOGICAL FUNCTIONS

In this section, we note some of the assumptions and

implementation details that are relevant when making

accurate cosmological predictions. In general, we use

the publicly available GSL library16 to perform all of

the integrations and interpolations. Most interpola-

tions use the gsl interp akima method, and the power

spectra interpolation use a bicubic spline provided by

gsl interp2d bicubic. We work with double precision

quantities throughout. The validation tests performed

for CCL are described in detail in Section 4.

3.1. Background functions & growth of perturbations

Cosmological predictions require making assumptions

on the values of several physical constants, as defined

in the previous sections. CCL adopts physical constant

values from CODATA 2014 (Mohr et al. 2016) with the

exception of the solar mass, which is not provided by

this source and which we take from IAU 2015 (Mamajek

et al. 2015).

We have performed a comparison of the physical con-

stants used in CCL to those used in GSL and CLASS as well

as published sources such as the NIST17 Handbook and

Particle Data Group (PDG) Review of Particle Physics

(Beringer et al. 2012). In general, we have found better

than 10−4 agreement except for the gravitational con-

stant and the value of the solar mass, where the discrep-

ancies are nevertheless < 10−3. Notice that the value of

these constants enters into the definition of the critical

density (Eq. 3).

3.2. Matter power spectrum

For speed, the initialization of a cosmological model

within CCL performs initial computations of the linear

and non-linear matter power spectra, which are then

interpolated to be used whenever required. A bicubic

spline is performed in two variables. The first one is the

logarithmically-spaced wavenumber. For the scale fac-

tor, we adopt a hybrid spacing scheme where this quan-

tity is linearly-spaced for a > 0.1 and logarithmically-

spaced otherwise. The goal of this hybrid scheme is to

allow sufficiently fine sampling at low redshift for LSST

observables, while at the same time allowing for pre-

dictions for CMB lensing without significantly slowing

down the computations, as would result from a linear-

spacing throughout. The spline interpolation causes

some precision loss in the power spectra output (com-

16 https://www.gnu.org/software/gsl/
17 https://www.nist.gov

https://www.gnu.org/software/gsl/
https://www.nist.gov
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pared to, for example, direct outputs from CLASS or the

Cosmic Emulator) which is quantified in Section 4.

We introduce a maximum value k (in units of Mpc−1)

up to which we evaluate the power spectra for in-

terpolation; we call this parameter K MAX SPLINE. A

separate K MAX parameter sets the limit of evaluation

of the matter power spectrum. The range between

K MAX SPLINE < k < K MAX is evaluated by performing

a second order Taylor expansion in ln k.

The Taylor expansion is implemented as follows: first,

we compute the first and second derivative of lnP (k, z)

at k0 = K MAX SPLINE − 2∆ ln k via finite difference

derivatives using GSL. The fiducial choice for ∆ ln k

is 10−2. We then apply a second order Taylor ex-

pansion to extrapolate the matter power spectrum to

k > K MAX SPLINE. The Taylor expansion gives

lnP (k, z)' lnP (k0, z) +
d lnP

d ln k
(k0, z)(ln k − ln k0)

+
1

2

d2 lnP

d ln k2
(k0, z)(ln k − ln k0)2. (71)

We also extrapolate the power spectrum at small

wavenumbers. In this case, we introduce the parameter

K MIN SPLINE, the wavenumber below which the power

spectra are obtained by a power-law extrapolation with

index ns:

logP (k < K MIN SPLINE, z) =

logP (K MIN SPLINE, z) +

ns(log k − log K MIN SPLINE) (72)

Note that an additional parameter, K MIN, sets the min-

imum k for integrations. This is set to K MIN= 5 ×
10−5 Mpc−1.

The value adopted for K MIN SPLINE depends on the

choice of power spectrum method is not accessible by

the user. For CLASS and the nonlinear power spectrum,

we adopt K MIN SPLINE that coincides with the smallest

wavenumber output by CLASS, K MIN SPLINE= 7× 10−6

Mpc−1. Hence, in practice, no extrapolation is occur-

ring in this case. For BBKS, the power spectrum is

computed analytically at all k, there is no extrapo-

lation. For the Eisenstein & Hu (1998) implementa-

tion, the splines of the power spectrum span K MIN<

k <K MAX SPLINE, so there is only extrapolation at high

k. For the nonlinear matter power spectrum from the

emulator, K MIN SPLINE and K MAX SPLINE are set to

fixed values that are determined from the range of va-

lidity of the emulator: K MIN SPLINE= 10−3 Mpc−1 and

K MAX SPLINE= 5 Mpc−1.

3.3. Angular power spectra

Different numerical approaches have been imple-

mented in the library in order to expedite the com-

putation of angular power spectra. We describe these

here. In all cases, to avoid calculating power spectra

at all integer values of `, by default CCL samples the

power spectra at particular values of ` and interpolates

between them to obtain the result at the ` values re-

quested by the user. The sampling scheme is based

on a combination of logarithmic samples at low-` and

linear samples at high-`, although the particulars of

the sampling scheme can be configured by the user. A

cubic-spline method is used to do the interpolation.

3.3.1. Limber approximation

As shown in Section 2.4.1, computing each transfer

function contributing to a given power spectrum involves

a radial projection (i.e. an integral over redshift or z or

χ), and thus computing full power spectra consists of

a triple integral for each `. This can be computation-

ally intensive, but can be significantly simplified in cer-

tain regimes by using the Limber approximation (Lim-

ber 1954; Afshordi et al. 2004), given by:

j`(x) '
√

π

2`+ 1
δ

(
`+

1

2
− x
)
. (73)

This eliminates the integrals associated with each of the

two transfer functions, accelerating the calculation sig-

nificantly.

Thus, for each k and ` we define a radial distance χ` ≡
(`+1/2)/k, with corresponding redshift z`. Substituting

this in the expressions presented in Section 2.4.1, the

power spectrum can be computed as a single integral:

Cab` =
2

2`+ 1

∫ ∞
0

dk Pδ (k, z`) ∆̃a
` (k)∆̃b

`(k) (74)

where

∆̃D
` (k) = pz(z`) b(z`)H(z`) (75)

∆̃RSD
` (k) =

1 + 8`

(2`+ 1)2
pz(z`) f(z`)H(z`)− (76)

4

2`+ 3

√
2`+ 1

2`+ 3
pz(z`+1) f(z`+1)H(z`+1)

∆̃M
` (k) = 3ΩM,0H

2
0

`(`+ 1)

k2

(1 + z`)

χ`
WM(z`) (77)

∆̃L
` (k) =

3

2
ΩM,0H

2
0

√
(`+ 2)!

(`− 2)!

1

k2

1 + z`
χ`

WL(z`) (78)

∆̃IA
` (k) =

√
(`+ 2)!

(`− 2)!

pz(z`) bIA(z`)fred(z`)H(z`)

(`+ 1/2)2
. (79)

The Limber approximation works best for wide radial

kernels and high `. The integration in Eq. (74) is per-
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formed via Gauss-Kronrod quadrature, as are the inte-

grals needed to estimate the lensing and magnification

window functions (Eqs. 27 and 29). The integration

limits for Eq. 74 are adapted to the shape of the win-

dow functions entering ∆̃a,b, with absolute limits given

by the K MIN and K MAX parameters described in Section

3.2.

3.3.2. Beyond Limber: Angpow

The computation of the Cab` without the Limber ap-

proximation is extremely costly in terms of computing

time using this method, particularly if one wants to ex-

tensively explore a full cosmological parameter space.

To overcome this issue, CCL provides fast non-Limber

predictions by calling the Angpow software (Campagne

et al. 2017a).

The angular power spectrum for two tracers Cab` is

computed in Angpow according to the following expres-

sion

Cab` =

∫∫ ∞
0

dzdz′pz1(z1)pz2(z′)
∫ ∞

0

dk f`(z, k)f`(z
′, k).

(80)

The auxiliary function f`(z, k) is defined as

f`(z, k) ≡
√

2

π
k
√
Pδ(k, z) ∆̃`(z, k) (81)

with ∆̃`(z, k) the function describing the physical pro-

cesses such as matter density fluctuations and redshift-

space distortions as described for instance in Durrer

(2008); Yoo et al. (2009); Yoo (2010); Challinor & Lewis

(2011); Bonvin & Durrer (2011).

The Angpow version delivered with CCL can only model

galaxy clustering tracers (no gravitational lensing), and

this without the magnification lensing term (Eq. 26).

The incorporation of those transfer functions is left for

future work, but in principle this is a straightforward

extension of Angpow. For galaxy clustering tracers we

define ∆̃`(z, k) as

∆̃`(z, k) ≡ b(z)j`(kχ(z))− f(z)j′′` (kχ(z)) (82)

with j`(x) and j′′` (x) the spherical Bessel function of

order ` and its second derivative, and f(z) the growth

rate of structure.

In Angpow, the inner integral in k is computed first.

To conduct such computation where the integrand is a

highly oscillating function, the 3C-algorithm described

in details in Campagne et al. (2017a) is used. In brief,

it relies on the projection of the oscillating f`(z,k) onto

a Chebyshev series of order 2N . The product of the two

Chebyshev series is performed with a 22N Chebyshev

series; then the integral is computed using Clenshaw-

Curtis quadrature. Finally, the integrals over z are per-

formed once again via an optimised Clenshaw-Curtis

quadrature. All the Chebyshev expansions and the

Clenshaw-Curtis quadrature are performed via the Dis-

crete Cosine Transform of type I from the DCT-I fast

transform of the FFTW library (Frigo & Johnson 2012).

As in the general case the Limber approximation is

valid at high ` values, the CCL user can define an `

threshold to switch from the non-Limber computation

to the faster Limber approximation.

3.4. Correlation functions

Computing the angular correlation functions essen-

tially involves performing a linear transformation on

the power spectra to go from harmonic to real space.

The exact equations (38, 40, 42) relating both quanti-

ties involve carrying out Nθ × `max operations, where

`max ∼ 104−5 is the maximum multipole needed to

achieve convergence and Nθ is the number of angu-

lar scales θ at which the angular correlation function

needs to be computed. Thus, evaluating these expres-

sions directly can become prohibitively slow and should

be avoided except in regimes where other approxima-

tions are not valid. In particular CCL only supports the

brute-force evaluation of these equations for correlations

involving at least one spin-0 field. The default method

in CCL is to use the flat-sky approximation and evaluate

the Hankel transforms (Eqs. 39, 41, 43).

CCL provides two methods to compute Hankel trans-

forms:

Brute-force integration.—CCL allows users to compute

Hankel transforms by brute-force integration over the

Bessel functions using an adaptive Gauss-Kronrod algo-

rithm. The oscillating nature of these functions makes

this method slow and not appropriate for likelihood-

sampling.

Thus, despite the higher precision of the brute-force

integration approach, the preferred method to compute

correlation functions is through the use of FFTlog (see

below), and we support the brute-force method primar-

ily for testing and validation.

FFTlog.—The public code FFTlog18 is able to com-

pute fast Hankel transforms through the assumption

that the kernels of these transforms are periodic func-

tions in logarithmic space. The Hankel transform can

then be solved using Fast Fourier Transforms at a much

lower computational expense than brute-force integra-

tion (Hamilton 2000; Talman 2009). CCL incorporates a

18 http://casa.colorado.edu/~ajsh/FFTLog/

http://casa.colorado.edu/~ajsh/FFTLog/
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version of the FFTlog method with only minor modifi-

cations from the original. The only potential drawback

of this method is the need to sample the kernels (i.e.,

the C`) on very small scales to ensure the convergence

of the method. To do this, CCL extrapolates the power

spectrum as a power law, assuming C` ∝ `β , with a tilt

β estimated from the logarithmic slope of the two last

values of the C` provided as input. We have verified

that this method agrees with the brute-force integration

to well within cosmic-variance uncertainties.

We should also note that other approaches relating the

correlation functions directly with the three-dimensional

matter power spectrum (e.g. Campagne et al. 2017b)

could be useful in accelerating this computation, and

we will explore these in the future.

3.5. Halo mass function, halo bias & halo model

The computation of the halo mass function requires

obtaining the derivative of σ−1 with respect to mass,

Eq. (46). These derivatives are calculated utilizing a

spline interpolation of σ(M). These splines cover the

range from 106 to 1017M�. For each value of log(M)

in our spline evaluation, we calculate the value of σ(M)

half a step in either direction. We use the difference com-

pared to the mass spacing to calculate an approximate

derivative, which is then used in the spline interpola-

tion. The precision of this method was established for

the halo mass function within the mass range explored

by Tinker et al. (2010) and we give details on this in the

next section. We note that the accuracy is reduced at

the edges of these splines and exploring extreme mass

ranges may require changes in the parameters to initial-

ize these splines.

In order to accommodate a wide range of values of the

overdensity parameter ∆v, we have generated a spline

interpolation between best fit values as defined by Tin-

ker et al. (2008) and Tinker et al. (2010). This covers a

dynamic range from ∆v = 200 to 3200, with respect to

the mean density. Within this range, we interpolate in

the space of the fit parameter and log ∆v using Akima

interpolation built from piecewise third order polynomi-

als. We have chosen this rather than the fitting formulas

utilized in Tinker et al. (2010) in order to assure high

precision match to the Tinker halo mass function when

choosing a value of ∆v directly from the paper.

Calculations required to make predictions for halo bias

are analytical and are thus implemented in CCL. In the

case of the halo model, this phenomenological approach

to modeling the matter power spectrum requires us to

perform the integrations of the two-halo term (Eq. 60),

the one-halo term (Eq. 61) and the window function

(Eq. 63). For both Eq. (60) and Eq. (61) we use

GSL INTEG GAUSS41 to perform the integration between

the limits of 107 and 1017 solar masses with a relative

error tolerance of 10−4. Achieving the correct k → 0

limit for the two-halo term, which should be exactly the

linear power spectrum, is difficult numerically because

of the large amount of mass contained in low-mass halos

according to most popular mass functions. We deal with

this for an arbitrary lower mass limit by enforcing the

large-scale limiting behavior of the halo mass function

(Eq. 64) by adding the mass missing from the integral

as a delta function in mass at the lower limit in the

two-halo integral in Eq. (60). For NFW haloes (Eq. 66)

the integral required for the window function (Eq. 63)

is analytical:

Wδ(M,k) = 4πr3
s×

{sin(krs) [Si({1 + c}krs)− Si(krs)]

+ cos(krs) [Ci({1 + c}krs)− Ci(krs)]

− sin(krv)

(1 + c)krs

}
,

(83)

where Si(x) and Ci(x) are the sine and cosine integral

functions and c is the concentration parameter defined

in Section 2.7.

3.6. Massive neutrinos

When initializing a cosmology with massive neutrinos

within CCL, the user can provide either a single value for

mν , corresponding to a sum of the masses of three neu-

trinos, or a set of three values, corresponding directly to

the three masses. In the former case, one can also specify

how the sum of masses should be split for calculations.

The default behavior of CCL is to split the sum into three

masses which are consistent with the normal neutrino

mass hierarchy, but an inverted hierarchy or equal split-
ting can also be requested. (For a review of the neutrino

mass hierarchies and relevant particle physics results,

see for example Lattanzi & Gerbino 2017; Lesgourgues

& Pastor 2012b.)

For equal splitting, it is clearly trivial to compute the

three neutrino masses. If splitting with respect to the

normal or inverted hierarchy is desired, the mass calcula-

tion of the three masses is only marginally more compli-

cated. The relevant known quantity which has been de-

termined via particle physics experiments is the square

of the difference of neutrino masses (up to a sign for one

of the differences, hence the two possible hierarchies, see

Lesgourgues & Pastor 2012b; Lattanzi & Gerbino 2017).

Because we know the square of the differences rather

than the differences themselves, we must solve a set of

quadratic equations for the neutrino masses. This is

accomplished via a simple implementation of Newton’s
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method, which converges to within machine precision in

a few iterations.

Having then a set of three neutrino masses, we check

which of the corresponding neutrino species is non-

relativistic today (mν > 0.00017, Lesgourgues & Pas-

tor 2012b), and obtain the number of massive neutri-

nos in the cosmology. We use this, along with Neff , to

set the number of relativistic neutrinos species, which

is required in computing Ωγ and Ων,rel. We must be

careful in doing so, as only for massive neutrinos do we

modify the relationship between the temperature of the

CMB and the neutrino temperature as described follow-

ing Eq. (6) above. The value of Nν,rel consistent with

the user-provided Neff is given by:

Nν,rel = Neff − (TNCDM)
4

(
4

11

)− 4
3

Nν,m. (84)

In Eq. (6) above, we specify how Ων,m is computed for

a given cosmology with massive neutrinos. Within this

expression is a phase-space integral:∫ ∞
0

dxx2

√
x2 + m̃2

exp(x) + 1
. (85)

At high and low m̃, corresponding to high and low

mass neutrinos, this integral need not be evaluated nu-

merically. At high m̃, we set the integral equal to

5ζ(3)m̃/(18π4) (where ζ is the Riemann zeta function),

while at low m̃, it goes to 7
8 . The m̃ values at which

these approximations are taken can be set by the user.

Outside of the regime in which these approximations are

valid, the integral is computed numerically using GSL,

splined, and stored such that for a single cosmology it

must only be computed once.

It may sometimes be preferable or necessary to specify

a cosmology in terms of Ων,m instead of mν . To facilitate

this, CCL includes a convenience function which returns

mν given Ων,m. This is achieved via the relationship

(see, e.g., Lesgourgues & Pastor 2012b)∑
mν = 93.14eV × Ων,m (86)

and then by splitting
∑
mν into three neutrinos masses

using the convention given by the user (the default being

the normal mass hierarchy).

4. VALIDATION

Our goal in building CCL was to ensure that all outputs

are validated to a well-established high level of numerical

accuracy. We described the core of our validation proce-

dure in Section 1. Validation was achieved by perform-

ing different types of tests of CCL outputs. When pos-

sible, we established the accuracy of CCL against known

analytic solutions. As there are few cases of observables

and cosmologies for which there is such an analytic pre-

diction, this is often not sufficient for our purposes. In

one specific case (Section 4.2.4), we can compare the

CCL outputs against numerical simulations and there is a

specific threshold of accuracy that needs to be achieved.

Most commonly, we compare CCL outputs against one or

multiple independent implementations obtained for the

same cosmology. For such cases, we occasionally know

the independent implementation to be more accurate.

When this is not the case, we describe the differences

between the implementations made by CCL and the in-

dependent benchmark code. Those independent imple-

mentations are provided and within the CCL repository

together with our main library. For each feature, we de-

fine and quantify a numerical accuracy parameter, A, in

the following sub-sections, which describes the relative

or absolute difference between the CCL prediction and

the independent one.

The ultimate goal was to guarantee that any numer-

ical uncertainty in the predictions for correlation func-

tions are within a fraction of the expected statistical

uncertainty for LSST. Moreover, we ensure that any

prediction of the matter power spectrum, necessary for

predicting cross-correlations between probes, has a well-

established numerical accuracy. In this section, we doc-

ument the numerical accuracy achieved for each observ-

able and demonstrate that our overall goal has been

achieved. We emphasise that the hereby presented tests

pertain to numerical accuracy alone, while details of the

physical accuracy of each model are provided in Section

2.

There are two cases where CCL is calling external codes

to perform the computations. CLASS and the Cosmic

Emulator, described in Section 2, are used by CCL in

making power spectrum predictions. In doing so, and

to improve on the speed of the code, power spectra

from these codes are tabulated and interpolated. To

ensure that this procedure does not introduce any sig-

nificant deviations compared to the direct outputs of

those codes, we compare CCL power spectra outputs to

CLASS in sub-sections 4.2.2 and 4.2.3, and to the simu-

lated power spectra used to calibrate the Cosmic Emu-

lator in sub-section 4.2.4.

Table 2 summarises all the CCL validation tests dis-

cussed in this section. All plots presented in this section

can be reproduced by means of a python notebook avail-

able in the public repository. Accuracy checks can also

be run automatically upon installation of the software.
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All the independent scripts used to generate the predic-

tions used to validate CCL are also released19.

In the following sub-sections, we also comment on po-

tential discrepancies in the implementation of cosmolog-

ical predictions between CCL and the benchmarks that

could be responsible for the level of agreement achieved.

4.1. Background quantities & growth of perturbations

Comoving radial distances, the growth factor and dis-

tance moduli were compared against independently pro-

duced benchmarks for redshifts between z = 0.01 and

z = 1000. These comparisons were performed for the

cosmologies listed in Table 3 and for the cosmologies

with massive neutrinos listed in Table 4. (Notice that

the growth function with massive neutrinos is not sup-

ported by CCL because it is scale-dependent and there-

fore ill-defined in our framework. Hence, no tests are

provided for the growth function in those cosmologies.)

The accuracy metric was defined as the fractional dif-

ference between the prediction made by CCL and by

an independent implementation (labeled i), i.e., for the

growth factor,

A ≡ |DCCL(z)−Di(z)|
Di(z)

(87)

and analogously defined for the comoving radial distance

and distance moduli.

Figure 2 summarizes our results. The left panel shows

the distance accuracy achieved for different cosmologi-

cal models (curves of different thickness) as a function of

redshift, which is always better than 5× 10−7. Distance

comparisons are made against benchmarks produced

with the CosmoMAD package20 as well as the python ver-

sion for CLASS21. For speed, CCL relies on an intermedi-

ate instance where we adopt a specific grid for interpo-

lating the comiving radial distance as a function of the

scale factor for a given input cosmology. This instance

is not there in CosmoMAD and can introduce additional

uncertainty. CLASS similarly interpolates background

quantities from a pre-computed grid, but no efforts have

been made to match the interpolation method or grid.

Distance moduli in CCL are also obtained from the in-

terpolated comoving radial distance.

Similarly, the growth function is predicted with better

than 6 × 10−6 accuracy in the right panel of Figure 2.

The growth function is obtained by solving the differ-

ential Eq. (10) by means of a Runge-Kutta Cash-Karp

19 A list of the scripts available can be found in the CCL wiki:
https://github.com/LSSTDESC/CCL/wiki/Benchmarks

20 https://github.com/damonge/CosmoMAD
21 classy,https://github.com/lesgourg/class_public

algorithm. CCL then adopts a specific grid for interpolat-

ing the growth function with the scale factor. CosmoMAD,

used for benchmarking the growth function produced by

CCL, implements a similar algorithm. Additional tests

against independent codes (e.g., CosmoLike22 Krause

et al. 2017, cosmosis23 Zuntz et al. 2015) for a wide

range of wCDM models yielded agreement to 10−3.

We validate the implementation of the modified

growth function described in Eq. 12 against an an-

alytical prediction. In particular, we verify that, by

setting ∆f(a) = k a for a constant k, the growth factor

computed by CCL is compatible with the analytical so-

lution D(a) = D0(a) exp[k (a − 1)], where D0(a) is the

solution for ∆f(a) = 0, to better than one part in 105.

Additional independent distance benchmarks were

obtained from astropy (Astropy Collaboration et al.

2013). We find that the agreement between CCL and

astropy is only at the 10−3 level for cosmologies with

massive neutrinos, in contrast to the much better agree-

ment shown in left panel of Figure 2, which relies on

benchmarks obtained from CLASS. We believe that this

is due to the fact that CCL uses the full phase-space

integral in computing the massive neutrino density as

defined in Eq. (85), while astropy uses a fitting func-

tion which is itself only accurate at a 10−3 level. Hence,

true accuracy is probably better than quoted and closer

to the value reported in the first row of Table 2, as

shown by Figure 2.

4.2. Matter power spectra

4.2.1. Analytic expressions

As discussed in Section 2.3, several power spectrum

methods are implemented in CCL. Two of them, the

BBKS (Bardeen et al. 1986) and the Eisenstein & Hu

(1998) methods are implemented for validation purposes

only and feed into the tests for observables such as an-

gular power spectra and correlation functions, as we will

see in subsequent sections. These two implementations

have been validated against independent implementa-

tions. The accuracy in this case was defined as the

absolute fractional difference between the CCL and the

independent predictions, i, at any given k and z:

A ≡ |PCCL(k, z)− Pi(k, z)|
Pi(k, z)

. (88)

For BBKS, this test was performed at 0 ≤ z ≤ 5 in

the wavenumber range 10−3 ≤ k ≤ 10hMpc−1 with

10 bins per decade, and yielded an accuracy level of

22 https://github.com/CosmoLike
23 https://bitbucket.org/joezuntz/cosmosis/wiki/Home

https://github.com/LSSTDESC/CCL/wiki/Benchmarks
https://github.com/damonge/CosmoMAD
https://github.com/lesgourg/class_public
https://github.com/CosmoLike
https://bitbucket.org/joezuntz/cosmosis/wiki/Home


21

Cosmological models with massless neutrinos

Acronym Model Ωm Ωb ΩΛ h0 σ8 ns w0 wa

CCL1 flat ΛCDM 0.3 0.05 0.7 0.7 0.8 0.96 -1 0

CCL2 wCDM 0.3 0.05 0.7 0.7 0.8 0.96 -0.9 0

CCL3 wCDM 0.3 0.05 0.7 0.7 0.8 0.96 -0.9 0.1

CCL4 open wCDM 0.3 0.05 0.65 0.7 0.8 0.96 -0.9 0.1

CCL5 closed wCDM 0.3 0.05 0.75 0.7 0.8 0.96 -0.9 0.1

CCL6 flat ΛCDM 0.3 0 0.7 0.7 0.8 0.96 -1 0

WMAP7 flat ΛCDM 0.272 0.0455 0.728 0.704 0.810 0.967 -1 0

Planck 2013 flat ΛCDM 0.318 0.0490 0.682 0.671 0.834 0.962 -1 0

Table 3. Cosmological models with massless neutrinos used in testing CCL against independently produced benchmarks.

Cosmological models with massive neutrinos

Acronym Model Ωm Ωb ΩΛ h0 σ8 ns w0 wa Neff mν (eV)

CCL7 flat ΛCDM, mν 0.3 0.05 0.7 0.7 0.8 0.96 -1 0 3.013 {0.04, 0, 0}

CCL8 wCDM, mν 0.3 0.05 0.7 0.7 0.8 0.96 -0.9 0 3.026 {0.05, 0.01, 0}

CCL9 wCDM, mν 0.3 0.05 0.7 0.7 0.8 0.96 -0.9 0.1 3.040 {0.03, 0.02, 0.04}

CCL10 open wCDM, mν 0.3 0.05 0.65 0.7 0.8 0.96 -0.9 0.1 3.013 {0.05, 0, 0}

CCL11 closed wCDM, mν 0.3 0.05 0.75 0.7 0.8 0.96 -0.9 0.1 3.026 {0.03, 0.02, 0}

Table 4. Cosmological models with massive neutrinos used in testing CCL against independently produced benchmarks. We
calculate Neff according to Eq. (84), based on the number of massless and massive neutrino species.

10−5.24 For the Eisenstein & Hu (1998) matter power

spectrum, we obtained similar accuracy at z = 0 for the

same wavenumbers. The cosmologies for which the tests

were implemented are specified in Table 2.

For both BBKS and the Eisenstein & Hu (1998) mat-

ter power spectra, the comparisons with CCL were per-

formed using CosmoMAD. As in CCL, CosmoMAD imple-

ments analytical functions to produce these predictions

and then creates an interpolation of the result with log-

arithmic wavenumber. The level of agreement between

CCL and the benchmarks is sensitive to the choice of

interpolation scheme and resolution for the power spec-

trum in k and redshift.

The BCM implementation for the impact of baryons

on the matter power spectrum, described in Section 2.3

is also analytical. Following Eq. (88), we found it to

be accurate to 10−12. In this case, we expect no sources

of discrepancy between the independent implementation

24 We noticed that there are 2 typographical errors for the
BBKS transfer function in “Modern Cosmology” (Dodelson 2004)
compared to the original BBKS paper. The quadratic term should
be (16.1q)2 and the cubic term should be (5.46q)3. The BBKS
equation is correct in Peacock (1999). Using the wrong equation
can give differences in the results above the 10−4 level.

and CCL other than the numerical precision of the vari-

ables involved in the computation.

4.2.2. Validation of interpolation schemes

In its default configuration, CCL adopts the halofit

(Takahashi et al. 2012) implementation by interpolat-

ing CLASS power spectra outputs to model the mat-

ter power spectrum. The computation of the power
spectrum from CLASS can be significantly sped up by

interpolating the matter power spectra in the range

K MIN SPLINE < k < K MAX SPLINE and extrapolating

beyond it, as described in Section 3. In this section, we

describe the loss of accuracy due to this method. The

tests presented are performed in a flat ΛCDM cosmol-

ogy similar to CCL1, but with a normalization of the

power spectrum set by As = 2.1× 10−9 rather than σ8.

The accuracy of this approximation is shown in Fig-

ure 3 for redshifts z = 0, z = 3 and z = 20. We

compare the non-linear matter power spectrum at these

redshifts, computed with the previously described ap-

proximation, to the matter power spectrum obtained by

setting the power spectrum splines to high-accuracy val-

ues. We find that for typical values of ∆ ln k = 10−2 and

K MAX SPLINE= 50 Mpc−1, lnP has converged to an ac-

curacy that surpasses the expected impact of baryonic
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Figure 2. Accuracy achieved by CCL in the prediction of background quantities. Left panel: fractional difference between the
predictions of the comoving radial distance by CCL and the benchmark for models CCL1–5 documented in Table 3 (solid lines)
and models CCL7–11 with massive neutrinos documented in Table 4 (dashed lines). Right panel: fractional difference between
the predictions of the growth factor by CCL and the benchmark for models CCL1–5. The growth factor in cosmologies with
massive neutrinos is scale-dependent and not supported by CCL.

effects on the matter power spectrum at k > 10 Mpc−1.

(For an estimate of the impact of baryons on the total

matter power spectrum, see Schneider & Teyssier 2015.)

With the implementation described above, the power

spectrum splines are initialized up to K MAX SPLINE.

This is also true for the linear matter power spectrum,

which is used within CCL in particular to obtain σ8 (see

Eq. 48). We have tested how this procedure affects the

convergence of the linear matter power spectrum. We

compare the fiducial CCL output to the case where we

increase the precision of all spline parameters by an or-

der of magnitude (i.e. we use 10 times larger sampling

rates in k and a, and extend the interpolation ranges

in k by 1 decade on either end). The result is shown

in Figure 3. For some applications that use the linear

power spectrum, the user might need to increase the

value of K MAX SPLINE, but overall the impact of the

fiducial interpolation parameters is negligible for most

applications.

In addition to the above tests in ΛCDM cosmologies

without massive neutrinos, we have checked the impact

of using splines (at intermediate k) and extrapolation

(at low and high k) in cosmologies CCL7, CCL8, and

CCL9 with massive neutrinos, defined in Table 4. We

compare the linear and non-linear matter power spec-

trum as computed directly via CLASS to that computed

using CLASS via CCL. We find that for k between K MIN

and K MIN SPLINE, the two power spectra agree to better

than 10−4 in all models. For k between K MAX SPLINE

and K MAX, agreement is better than 10−3, which is suf-

ficient given the significant physical uncertainties intro-

duced at these small scales by effects such as galaxy for-

mation (van Daalen et al. 2011). The fractional differ-

ence between the two non-linear power spectra is shown

in Figure 4.

4.2.3. Generalized validation of the power spectrum over
ΛCDM parameter space

While concentrating on individual points in cosmolog-

ical parameter space allows us to perform detailed vali-

dation tests, as above, it is important for CCL to also be

validated across a wide range of cosmological parameter

values, e.g., to ensure validity for MCMC analyses. In

this section, we present a set of validation tests for the

CCL linear and non-linear matter power spectrum func-

tions that spans a broad range of ΛCDM parameters.

Covering a full range of all 5 ΛCDM parameters on

a regular grid would be prohibitively expensive, so an

alternative method for fairly (but more sparsely) sam-

pling the parameter space is needed. We use Latin Hy-

percube Sampling to determine a tractably-sized set of

sample points. This splits the parameter space into a

grid with N bins per dimension. The sample points are

then chosen by going through each dimension in turn

and choosing a bin at random without replacement, so

that a given bin in each dimension is only ever chosen

once. This is repeated until all bins in each dimension

contain a single sample (or until a maximum number of

sample points has been reached). This has the effect of

covering the space uniformly but sparsely, with only N

sample points chosen from the N5 available positions on

the grid. The exact location of the sample within each

bin can be chosen from a uniform distribution within

that bin, but for simplicity we put each sample at the

bin center. We use N = 100 sample points per dimen-
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ter power spectrum as computed directly via CLASS with that
computed using CLASS via CCL in cosmologies CCL7, CCL8,
and CCL9 with massive neutrinos.

sion, with the ranges for each parameter given in Ta-

ble 5. These ranges were chosen to be significantly wider

than those allowed by current observational constraints,

to ensure that the full parameter range expected to be

accessed by MCMC analyses is covered. For the pur-

poses of this exercise, we allow only massless neutrinos

(Neff = 3.046), and set TCMB to the same value in CCL

and CLASS.

For each set of parameters, we then calculate the lin-

ear and non-linear (halofit) power spectra using CCL

for a range of redshifts. A corresponding set of reference

power spectra is then produced using CLASS directly,

Parameter Range

h [0.55, 0.8]

Ωc [0.15, 0.35]

Ωb [0.018, 0.052]

As [1.5, 2.5]× 10−9

ns [0.94, 0.98]

Table 5. Ranges of ΛCDM parameters used for the gener-
alised CCL validation tests of the matter power spectrum.

i.e. using a regular installation of CLASS (v2.6.3). We

run this with either default precision settings (‘stan-

dard precision’), or settings intended to produce high-

precision CMB results (‘high precision’), taken from the

pk ref.pre precision file that is bundled with CLASS.

Figure 5 shows the fractional difference between the

CCL and CLASS matter power power spectra at z = 0 for

100 sample points over the parameter space, with each

line colored according to the value of Ωc for that sam-

ple. Results for different power spectrum types (linear

vs. halofit) and CLASS precision settings are shown for

comparison.

As shown in the top two panels of Figure 5, CCL re-

produces the standard CLASS results well across a broad

range of parameter values, always remaining well within

a fractional precision of 10−4. This demonstrates the ro-

bustness of our choice of spline parameters to different

cosmological parameter values.

The lower panels in Figure 5 show the fractional de-

viation between CCL (which always uses the ‘standard’
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CLASS precision) and CLASS with high precision settings.

These deviations are more significant, especially around

the wavenumbers where the baryon acoustic oscillation

feature is most prominent. The precision is still gener-

ally better than 10−3 however, and is only worse than

that for the very lowest values of Ωc.

Figure 6 shows the same comparison, but now for

z = 2. The precision on the linear matter power spec-

trum is almost an order of magnitude worse than at

z = 0 for the standard precision settings (but still al-

ways better than 10−4), and only slightly worse than

at z = 0 for the high precision settings. The picture is

slightly different for the halofit power spectrum how-

ever, where moderate deviations are seen for the stan-

dard precision settings in models with small values of Ωc.

This appears to be caused by a setting inside CLASS that

switches off halofit corrections when a redshift- and

cosmology-dependent threshold is reached, and can be

mitigated by increasing the value of the P k max 1/Mpc

parameter (which is already set to a relatively high value

of 50 in CCL by default). Larger values of Ωc produce

only slightly worse precision than at z = 0, and the high

precision halofit results are also relatively unchanged.

These results show that the CLASS-based CCL power

spectrum calculations are robust across a broad range of

cosmological parameters, especially for the linear power

spectrum, but that some caution must be taken when

using the halofit power spectrum in MCMC studies

that involve higher redshifts for example.25

4.2.4. Validation of the Cosmic Emulator implementation

The matter power spectrum emulation procedure from

Lawrence et al. (2017) has an intrinsic accuracy com-

pared to the simulated results used for its construction.

It effectively provides a fitting scheme which allows in-

terpolation between the simulation results. As a conse-

quence, the method itself has some limitations in how

well it can reproduce the simulation results. CCL takes

the emulator predictions and interpolates between the

wavenumber and scale-factor notes in the emulator out-

put. To validate the final power spectra coming out of

CCL, we compared them directly to the simulated spectra

from Lawrence et al. (2017) for a subset of the cosmolo-

gies adopted in that work. In this section, we quantify

the accuracy of the CCL predictions by estimating

A ≡ |PCCL(k, z)− PL17(k, z)|
PL17(k, z)

(89)

25 Note that the K MAX SPLINE setting in the ccl params.ini

file can be used to change the value of P k max 1/Mpc used for the
halofit calculation, so this issue can be avoided at the expense
of an increase in runtime.

where the label L17 refers to the smoothed simulated

power spectra from Lawrence et al. (2017). Notice that

the emulator is intrinsically accurate to 1% for cosmolo-

gies without massive neutrinos, and to 3% for cosmolo-

gies with massive neutrinos. In other words, replacing

PCCL(k, z) in Eq. (89) by the direct emulator output

would yield A of 0.01 and 0.03 for the two different fam-

ilies of cosmologies. In the validation test presented in

this section, we focus on ensuring that CCL does not de-

viate from that overall level of accuracy.

Our results are shown in Figure 7. For cosmologies

without neutrinos, we required the matter power spec-

trum at z = 0 to be within 1% of the smoothed simu-

lated power spectrum from Lawrence et al. (2017) (see

their Figure 6). Similarly, we required 3% accuracy for

cosmologies with neutrinos (their Figure 5). The cos-

mologies that were tested are the ones listed in Table 3,

whose parameter values are specified in Lawrence et al.

(2017). In both cases, we find that the CCL implemen-

tation falls below the target accuracy for the full range

of scales tested. This is not surprising, as CCL directly

incorporates the publicly available emulator prediction

code26. The essential difference in the implementation

is that the predictions of the public code for the mat-

ter power spectrum are interpolated in wavenumber and

scale factor as we described in Section 3.2.

4.3. Halo bias and halo mass function

The accuracy of the halo mass function calculation

was checked against benchmarks produced by CosmoMAD

for power spectra obtained using the BBKS approxima-

tion, which allows us to isolate the numerical inaccu-

racies associated to the mass function calculation from

those arising from the power spectrum calculation. For

the halo mass function, we compare the value of σ,

σ̃ ≡ log[σ−1(M)], (90)

and the value of the halo mass function in the form used

in Tinker et al. (2008),

H ≡ log[(M2/ρ̄m)dn/dM ]. (91)

We define three new accuracy metrics:

Ahmf1≡
|σCCL − σi|

σi
, (92)

Ahmf2≡
|σ̃CCL − σ̃i|

σ̃i
, (93)

Ahmf3≡
|HCCL −Hi|
Hi

. (94)

26 https://github.com/lanl/CosmicEmu

https://github.com/lanl/CosmicEmu
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Figure 7. Absolute fractional accuracy in the matter power spectra, Eq. (89), obtained by calling the Cosmic Emulator from
CCL and the smoothed simulated spectra from Lawrence et al. (2017). The left panel shows the results for cosmologies without
neutrinos; the right panel, results for cosmologies with neutrinos. The dashed line in both panels represents our target accuracy,
based on the claimed accuracy of the emulator by Lawrence et al. (2017).

Note that for σ(M), it is important to set the desired

precision level correctly for the numerical integrator. As

the integral yields σ2(M), this becomes the relevant con-

cern for numerical accuracy.

For Ahmf1 and Ahmf3 we achieve accuracies of 3 ×
10−5 and 5 × 10−5, respectively. For Ahmf2, the accu-

racy degrades to a value of 10−3. These accuracy levels

are acceptable, as it is significantly better than the phys-

ical accuracy of current halo mass function models. This

is demonstrated in Figure 8, where this calculation has

been run for a single cosmology using the Tinker et al.

(2010) halo mass function27. While there is a degrada-

tion in accuracy due to our spline treatment of the log

inverse of σ(M), we note that it does not significantly

degrade our halo mass function determination. While

improvement on this remains a task for the future, the

halo mass function varies between fitting functions sig-

nificantly more than this remaining error. As of this

time, we do not have independent implementations for

the halo bias function, though it should be noted that

this calculation does not involve any additional func-

tions beyond σ(M) and should not exceed a 10−4 tol-

erance level. Some deviation may exist between CCL

and other implementations due to our choice of spline

interpolation between Tinker et al. (2010) fitting param-

eters as a function of ∆v; we use an Akima interpolation

between those provided in Tinker et al. (2010) for the

halo mass function and this may lead to mild numerical

change. This approach is motivated by the fact that the

27 A single cosmology is used for this analysis as the Tinker
fitting parameters do not vary with cosmology.

difference in parameters at ∆v = 200 between the fit-

ting formula result and the tabulated best-fit parameters

leading to a greater than 10−4 error from our calculated

benchmarks in the halo mass function. As the tabulated

version is in common use in the literature, having higher

accuracy for the tabulated points was prioritized.

4.4. Halo model

In Figure 9 we show the power spectrum computed by

the CCL halo model compared to that from halofit and

to the linear matter spectrum for the CCL1 cosmology

from Table 3 at z = 0. The halo model predictions

show the correct general trend for the non-linear power

spectrum but differ in details. Compared to simulations

they are only accurate at the ∼ 30% level.

In Figure 10 we show the accuracy of the halo model

power spectrum compared to our independently pro-

duced benchmark. The benchmark was generated using

a standalone python script that uses the CCL power

spectrum as input, but includes independent implemen-

tations of the halo profiles and concentration-mass re-

lations. The script produced predictions for the 1-halo

and 2-halo contributions to the power spectrum solving

the corresponding mass integrals using a trapezium rule

and scipy’s quad method. We define an accuracy cri-

terion A as the ratio of power from CCL compared to

that from the independent code released with the CCL

repository. With this definition, we achieve an accuracy

of 10−3 across scales from 10−4 Mpc−1 < k < 10 Mpc−1

for three different cosmological models (CCL1, WMAP7,

Planck 2013) at both z = 0 and z = 1. The mass

range for the halo model integrations are identical for

the benchmark and the CCL implementation, as are the
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mass function, halo bias and halo profiles. Therefore we

suspect that the residual differences are due to the dif-

fering integration schemes between the benchmark and

CCL. The benchmark shown here was produced using a

non-adaptive trapezium rule, so this level of difference

is not surprising.

4.5. Two-point statistics
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Figure 10. The relative accuracy of the halo model power
spectrum calculation compared to our benchmarks. We
achieve a precision of 10−3 for the range of scales shown.
Solid lines show z = 0 while dashed lines show z = 1.
Different colors show different cosmological models (CCL1,
WMAP7, Planck 2013).

Validation tests for two-point statistics relied on the

BBKS linear matter power spectrum. This choice of

method was intended to remove any potential discrep-

ancies between the CCL implementation and the inde-

pendent one with regards to the matter power spectrum.

By using BBKS, we are relying on predictions that we

know to be fast and which we have already validated to

known numerical accuracy (Section 4.2.1).

We thus used the BBKS linear matter power spectrum

to compare two-point statistics for two redshift bins, re-

sulting in four tomographic combinations, labelled 1-1,
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1-2, 2-1 and 2-2. The validation tests were performed for

two kinds of redshift distributions: analytic and binned

ones. The goal of defining these two sets was to capture

any numerical deviation produced by the interpolation

of the binned distribution. We adopted the following an-

alytic redshift distributions: a Gaussian with σ = 0.15,

centered at z1 = 1; and another Gaussian with the same

dispersion but centered at z2 = 1.5. In the case of the

binned distributions, we adopted the two redshift distri-

bution histograms shown in Figure 11.

For both types of distributions, we computed the fol-

lowing quantities:

• Number counts angular power spectra: density

term only (no magnification, RSD, etc.) with

non-evolving linear bias b(z) = 1, in the range

2 ≤ ` ≤ 3000.

• Lensing E-mode angular power spectra: leading

order term only (no magnification), on the same

scales.

• The cross-power spectrum between galaxy posi-

tions and galaxy shear (galaxy-galaxy lensing), on

the same scales.

• Intrinsic alignments E-mode angular power spec-

tra, cross-spectra with galaxy shear and galaxy

positions, on the same scales, with bIA(z) set to

correspond to the commonly used parameteriza-

tion of alignment amplitude (e.g. Joudaki et al.

2018) with AIA = 1 and fIA(z) = 1.

• The cross-power spectrum between number counts

and CMB lensing, on the same scales.

• The cross-power spectrum between galaxy weak

lensing and CMB weak lensing, on the same scales.

• Number counts angular correlation functions in

the range 0.01 deg < θ < 8 deg, using 5 bins per

decade, and

• Lensing shear angular correlation functions (ξ+,ξ−),

similarly to above.

• The cross-correlation between both quantities

(galaxy-galaxy lensing), as above.

• The full shape-shape and shape-position observ-

ables for both angular power spectra and correla-

tion functions, where the intrinsic alignment con-

tributions to the observables are included.

Notice that RSD and magnification predictions are not

currently validated. We do not include real-space (cor-

relation function) benchmarks involving CMB lensing,
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Figure 11. Redshift distributions used for validating the
computation of angular power spectra and correlation func-
tions.

since they are functionally the same as number counts

(i.e. a spin-0 quantity). Angular power spectrum and

correlation function benchmarks for the full ‘3×2pt’ cal-

culation of galaxy clustering and weak lensing observ-

ables was created internally by CosmoLSS28 and other

independent codes.

For C` computations, we define as our accuracy metric

the absolute value of the difference between CCL and an

independent realisation, i, as a fraction of the cosmic-

variance-limit uncertainties:

A =

∣∣∣∣∣CCCL
` − C(i)

`

σ`

∣∣∣∣∣ . (95)

For the power spectrum Cab` between two fields a and b,

the cosmic variance errors are given by

σ2
` =

Caa` Cbb` + (Cab` )2

2`+ 1
. (96)

Our accuracy requirement, for all auto- and cross-

correlations with analytic and binned redshift distri-

butions is A < 0.1 (i.e. differences must be smaller than

one tenth of the cosmic-variance errors). Notice that

Eq. (96) assumes a full-sky survey. As a consequence,

our requirement is conservative compared to a survey

covering 40% of the sky, as expected for LSST, where

the uncertainty from cosmic variance would be ∼ 60%

larger.

The results for the auto- and cross-correlations be-

tween number counts and weak lensing are shown in Fig-

ure 12, while those involving CMB lensing are shown in

28 https://github.com/sjoudaki/cosmolss

https://github.com/sjoudaki/cosmolss
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Figure 13. In addition, we have verified that the intrin-

sic alignment auto-spectra and cross-spectra with shear

and galaxy positions satisfy our accuracy requirement

(intrinsic-intrinsic, shear-intrinsic, galaxy-intrinsic, and

the full observables, i.e, II, GI, gI, GG+II+GI, gG+gI).

In this case, the denominator in Eq. (95) includes the

lensing contribution as well.

The differences between the CCL results and the bench-

marks are mostly due to the integration and interpola-

tion methods. CosmoLSS is written in Fortran (com-

pared to CCL written in C) independently of any other

existing cosmic shear, galaxy-galaxy lensing, and galaxy

clustering code. It obtains the expansion history and

comoving distance with redshift from CAMB (in general

CAMB also provides the matter power spectrum, which is

however taken to be the same BBKS P (k) as CCL here).

It uses a cubic spline interpolation for the redshift dis-
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tributions, it performs the integral of the lensing ker-

nel using Romberg’s method, and for the outer integral

to obtain the angular power spectra it uses the trape-

zoidal rule with 370 logarithmically spaced bins over

the full redshift range (it also allows the user to choose

Romberg’s method for this outer integral). The integral

from angular power spectra to correlation functions is

performed through a direct summation over all integer

multipoles in the range 1 < ` < 59000 (other choices of

`max and integration methods have been explored and

found to yield consistent results). For purposes of bench-

marking CCL, while the impact is negligible, the angular

power spectra are not interpolated in this process but

directly computed at each of the multipoles.

The independent code that produces additional

galaxy-galaxy lensing benchmarks is written in python

and has a number of differences with respect to CCL.

Not only are redshift distributions interpolated prior to

the computation of the angular power spectra, but also

lensing kernels. Integration over redshift is performed

using the quad routine in python with a pre-specified

relative accuracy threshold of 10−7. The angular power

spectrum is then interpolated between 0 < ` < 6 × 104

and integrated to obtain the angular correlation func-

tion for this observable.

In the case of CMB lensing, we note that the re-

sults are particularly sensitive to numerical errors in the

computation of the distance to the last scattering sur-

face. The independent code that provides predictions for

auto- and cross-correlations of CMB lensing also adopts

a different integration strategy from CCL. In this case,

integration over redshift is performed via direct sum-

mation with a default number of 10 redshift bins. The

independent code relies on astropy for constants and

background computations, and this difference in imple-

mentation can contribute to the discrepancies with CCL.

Cosmological constraints from current weak lensing

surveys are also derived from correlation functions. As

we discussed in Section 2, the correlation functions are

modeled by Eq.(33) and obtained by CCL through nu-

merical integration of predicted angular power spectra.

We require that the absolute difference between the CCL

prediction and an independent one is smaller than our

expected error bars:

A =
∣∣∣ξCCL − ξ(i)

∣∣∣ < 0.5σLSST. (97)

where σLSST is the expected statistical uncertainty of

any given correlation function between tracers. The

choice of an absolute tolerance criterion here (compared

to fractional ones in the previous sub-sections) is driven

by the fact that the correlation function approaches zero

at large scales.

To obtain realistic targets for the convergence of pro-

jected correlation function computations for LSST anal-

yses, we calculated the expected statistical uncertainty

of the clustering and lensing correlation functions of

the LSST gold sample (LSST Science Collaboration

et al. 2009) assuming an effective source galaxy den-

sity of neff = 26 gal/sq arcmin for galaxy shape dis-

tortions (Chang et al. 2013), and galaxy density of

ngold = 45 gal/sq arcmin for number counts. Specif-

ically, we calculated the Gaussian covariance of an-

gular correlation functions following the formalism of

Joachimi et al. (2008), and note that leaving out the

non-Gaussian covariance terms makes our accuracy cri-

terion more conservative. We split the galaxy samples

into 10 tomography bins, defined to contain equal num-

bers of galaxies.

We compared the difference between CCL and the

benchmarks for the cosmic shear, galaxy-galaxy lens-

ing, and galaxy clustering correlations, for all tomo-

graphic bin combinations and both redshift distribu-

tions. Specifically, we took the value of the covariance in

the bins centered at z = 1 and z = 1.5 to compare to the

benchmarks. The results of this validation procedure for

the projected correlation function are shown in Figures

14 and 15. These suggest that the convergence between

CCL predictions and benchmarks is below the expected

statistical uncertainty. Similar to the power spectra, we

have verified that the target precision is achieved when

including intrinsic alignments.

The three-dimensional spatial correlation function

ξ(r) predicted by CCL was validated by comparing it

with an independent, precise numerical transform29.

We calculated ξ(r) by transforming the CCL non-linear

halofit power spectrum using this independent method

for the five cosmologies listed in Table 3 at redshifts

z = 0, 1, 2, 3, 4, 5. We then compared it with the ξ(r)

from CCL with a sampling of P (k) equal to N K 3DCOR

bins per decade. The accuracy metric is defined as

A = |ξCCL(r)− ξ(i)(r)|/ξ(i)(r). (98)

The default value of N K 3DCOR = 100,000 results in A <

2.5 × 10−3 for 0.1 < r < 250 Mpc and z = 0. The

agreement was better for higher redshifts.

We also compared the absolute value of r2ξ(r) and

find a maximum difference of ∆(r2ξ(r)) < 3.0 × 10−2

for the range r = 0.1 − 250 Mpc. This corresponds to

approximately 0.08% of the baryon acoustic oscillation

peak value of r2ξ(r). At the peak, the difference is only

29 This independent implementation is based on the
cluster toolkit package, available at http://cluster-toolkit.
readthedocs.io/en/latest/.

http://cluster-toolkit.readthedocs.io/en/latest/
http://cluster-toolkit.readthedocs.io/en/latest/
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9.0 × 10−3, or 0.024% of the peak height. The results

are shown in Figure 16.

To further validate the P (k) → ξ(r) transform we

performed a test using an analytical function ξ(r) =

(r/r0)a, whose inverse transform P (k) has a known an-

alytic form, P (k) ∝ k3+a. We used r0 = 5h−1 Mpc−1

and a = −1.67, which approximates the actual 3-

dimensional correlation function. We then compared

the CCL calculation of ξ(r) to the known analytic re-

sult, defining an analogous metric to Eq. (98). This was

found to be less than 0.4% in the range 1 < r < 200 Mpc

rising to about 5% at r = 1000 Mpc (see Figure 17).

For r = 0.1 − 0.8 Mpc the relative difference is ≈8%.

The accuracy at low and high distances can be improved

by increasing the range over which the power spectrum

splines are evaluated.

Although this function approximates the true three-

dimensional correlation distribution over the range of

interest in r, the transform P (k) does not have the cor-

rect behavior at low k where P (k) ∼ k. Therefore, a

second test was performed with the function P (k) =

Ak/(k0 + k)4, where A = 100 and k0 = 0.045 Mpc−1,

that approximates the true behavior of the power spec-

trum for all k. The transform to ξ(r) was performed

using Mathematica30 and compared to the CCL calcula-

tion. The results, shown in Figure 17 show agreement

to within 10−4 over most of the range in r. Since this

power spectrum results in a correlation function that

turns negative at r ≈ 150 Mpc, the accuracy metric is

large near this value.

The differences between the CCL calculations and the

benchmarks are primarily due to the method used to

compute the transform of Eq. (44). In CCL we use

FFTLog, while the benchmarks use either a slower pre-

cise numerical integration or an exact analytic expres-

sion, and therefore differences at the levels observed are

not surprising.

CCL performs non-Limber computations of angular

power spectra through the Angpow library as detailed

in Section 3.3.2. The Angpow software (Campagne et al.

2017a) was tested against CLASS and an external brute-

force non-Limber implementation, and can perform the

30 http://www.wolfram.com/mathematica/.

http://www.wolfram.com/mathematica/
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Figure 17. The relative error in the three-dimensional spa-
tial correlation function computed using the CCL algorithm
compared to an analytic function ξ(r) = (r/r0)−1.67 (blue
curve) and using P (k) = Ak/(k0 + k)4 (orange curve). Both
functions have known analytic transforms, ξ(r), but the sec-
ond one has an asymptotic behavior that matches P (k) ∼ k
at low k. In this validation test, the known P (k) was trans-
formed with the CCL algorithm and compared to the known
analytic result for ξ(r).

same computations approximately an order of magni-

tude faster (O(1s)). The external code first carried

out a brute-force integration of the transfer functions

in Eqs. 22-31 using a simple trapezium rule, before

computing the integral over k in Eq. 21 using an adap-

tive quadrature method. Its precision and speed pa-

rameters were optimised so that the relative numeri-

cal difference between the non-Limber computations is

lower than two orders of magnitude, from ` = 2 to

` = 1000. We demonstrate this in Figure 18, where we

plot the angular clustering power spectrum for a sample

of galaxies with 〈z〉 = 1 and a Gaussian redshift dis-

tribution that extends between |z − 〈z〉| < 5σz, where

σz = 0.02, for a CCL1 cosmology. The non-Limber pre-

diction deviates from the Limber case at low l as ex-

pected. The right panel shows the fractional difference

between the non-Limber curves, demonstrating the ac-

curacy of the Angpow prediction for our choice of pre-

cision and speed parameters. Also the external brute-

force non-Limber computation and Angpow were tested

to recover the Limber approximated curve at high ` for

a wide Gaussian window (σz = 0.1). The relative er-

rors with respect to the Limber result at high ` are also

lower than two orders of magnitudes compared to the
expected cosmic variance. The differences between the

CCL results and benchmarks from CLASS can be due to

the integration methods and in particular the choice of

the integral cut-off for small scales. The Angpow imple-

mentation in CCL sets the k integral cut-off automati-

cally using the user-defined maximum multipole `max as

kmax = π`max/χ(zmin) where χ(zmin) is the minimum

comoving distance within the redshift shells, while the

CLASS user has to set it appropriately.

5. USAGE

CCL is a public tool developed by the members of the

LSST-DESC and can be downloaded from the collab-

oration’s GitHub repository31. Installation instructions

31 https://github.com/LSSTDESC/CCL

https://github.com/LSSTDESC/CCL
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distribution centered on 〈z〉 = 1. The left panel shows the C` predictions from the Limber case (green), the non-Limber case
external to CCL (yellow dot-dashed) and Angpow (black). The right panel shows the fractional difference in the predicted clus-
tering angular power spectrum between Angpow and the extrernal brute-force non-Limber computation. The relative numerical
difference between the non-Limber computations is lower than two orders of magnitude.

are provided in a README file available in that same

repository. In particular, CCL is installable via pip with

minimal dependencies. These include cmake32, the GNU

Scientific Library33 and FFTW334. Instructions on how

to generate a Docker35 image are provided for portabil-

ity to different architectures.

A suite of tests can be run to ensure installation was

successful and all features perform normally. These com-

prise accuracy checks performed in C and unit tests

available in python. These are also run regularly with

the Travis continuous integration service36, ensuring

that the code remains reliable as we continue to improve

it.

The steps to follow to perform a standard cosmologi-

cal computation (for example, to obtain angular power

spectra for galaxy clustering) in CCL are the following:

• Set up a cosmology object which contains all the

information on the cosmological model. This will

not only specify the values of the cosmological pa-

rameters but also the choice of algorithm for com-

puting the matter power spectrum and informa-

tion on whether to work under a linear approxi-

mation. This step already allows the user to com-

pute quantities such as distances, the Hubble rate

or growth functions.

32 http://cmake.org
33 https://www.gnu.org/software/gsl/
34 http://www.fftw.org/
35 https://www.docker.com/
36 https://travis-ci.org

• In a second step, the user specifies a tracer ob-

ject, which contains all the information pertain-

ing to the sample of galaxies to be modelled. For

galaxy clustering, this includes information on the

bias of the sample and its redshift distribution.

The tracer also contains information on how the

clustering is to be modelled, e.g., taking into ac-

count magnification effects.

• Finally, the user can proceed to compute angu-

lar power spectra for a given set of multipoles via

the function ccl angular cls, by providing the

tracer object as input.

An example run corresponding to this case can be found

in the 3x2demo notebook or in the ccl sample run.c

example in the examples folder within the repository.

CCL is documented online37 and through Doxygen38

files released with the repository. The repository also

includes multiple example files in C and several Jupyter

notebooks showing many common use cases.

CCL is released under terms consistent with BSD 3-

Clause licensing39.

6. OUTLOOK

Science software development to facilitate the cosmo-

logical inference from LSST data is one of the crit-

ical tasks of the DESC. Recent cosmological analy-

ses of the Dark Energy Survey (DES) have relied on

37 https://readthedocs.org/projects/ccl/
38 http://www.doxygen.org/
39 https://github.com/LSSTDESC/CCL/blob/master/LICENSE

http://cmake.org
https://www.gnu.org/software/gsl/
http://www.fftw.org/
https://www.docker.com/
https://travis-ci.org
https://readthedocs.org/projects/ccl/
http://www.doxygen.org/
https://github.com/LSSTDESC/CCL/blob/master/LICENSE
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CosmoSIS (Zuntz et al. 2014) and CosmoLike (Krause

et al. 2017), while analyses of the Kilo Degree Survey

(KiDS) have relied on CosmoLSS (Joudaki et al. 2018)

(based on CosmoMC (Lewis & Bridle 2002)) and Monte

Python (Audren et al. 2013). All of these frameworks

employ CLASS, CAMB (Challinor & Lewis 2005), or the

Cosmic Emulator to compute the density power spec-

tra. Compared to the analyses of DES, KiDS and the

Hyper-Suprime Cam Survey (HSC), future data sets

(e.g. LSST, Euclid and WFIRST) have substantially

higher demands on analysis frameworks. Analyses are

becoming more complex in terms of cosmological physics

that is included in the analyses (neutrinos, modified

gravity, and dark matter models) and in terms of mod-

eling astrophysical and observational systematics at the

required precision.

It is the primary goal of CCL to become the back-bone

of all cosmological analyses carried out by the LSST-

DESC. CCL can also have applications for analytic co-

variance calculations needed for future analyses of cos-

mological observables. This unified approach of a vali-

dated CCL will ensure that LSST-DESC results are both

consistent (in that they will all be based on the same

theory framework) and accurate (in that this framework

has undergone a rigorous numerical validation).

Within LSST-DESC, the implementation of CCL in

realistic analysis pipelines has already begun: all like-

lihood module prototypes under development use it as

its back-bone, and the first of these, cosmological anal-

ysis of angular galaxy clustering cross-correlations, will

serve as a model for the design of the joint-probes like-

lihood of the LSST-DESC. This work has allowed us

to validate the performance of CCL in a realistic analy-

sis scenario, verifying its accuracy and efficiency in the

context of computationally demanding Markov Chain

Monte Carlo runs.

Beyond its usefulness in the LSST-DESC, the flexi-

ble design of CCL makes it an ideal tool for the analysis

of other cosmological datasets, as well as for the cross-

correlation of different experiments. To this end, and to

allow a generic and flexible analysis of the LSST data,

further functionality will be added to CCL. Plans are in

place to extend the range of standard and non-standard

cosmological models covered by the code, including ba-

sic and more complex modified gravity parametrisations

(Silvestri et al. 2013; Bellini & Sawicki 2014) and con-

sistent treatment of the growth function and the matter

power spectrum in modified gravity theories. Work is al-

ready underway to add predictions for cosmology with

clusters (McClintock et al. 2018). The simplified treat-

ment of the galaxy-matter connection for galaxy clus-

tering and intrinsic alignments will be improved by im-

plementing generic perturbation-theory approaches to

structure formation (McEwen et al. 2016). A more com-

plete implementation of all relevant cross-correlations

between large-scale structure observables and other cos-

mological probes (e.g. CMB integrated Sachs-Wolfe

effect —Sachs & Wolfe 1967—, and other secondary

anisotropies) will also soon be included. Likewise, CCL

is expected to provide consistent modeling of complex

astrophysical and observational systematics across all

probes, critical to LSST analyses.

In general, although this document presents the func-

tionality and performance of CCL shortly after its release,

we expect the library to be a continuously evolving piece

of software. In particular, we expect to study the trade-

offs between numerical accuracy and speed in the future,

as well as to propagate the uncertainties in theoretical

predictions to a forecasting framework that can deter-

mine their impact in cosmological parameters. This will

allow CCL to satisfy the analysis needs of future large

data sets, as well as more accurate and sophisticated

models for a broad range of cosmological and astrophys-

ical observables.
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Jérémy Neveu: Contributed to Angpow, built the inter-

face with CCL and the comparisons with benchmarks.

Antonio Villarreal: Contributed to initial benchmark-

ing, halo mass function code, and general code and

issues review.

Sukhdeep Singh: Contributed to the correlation func-

tions code and weak lensing benchmarks.

Thomas McClintock: Wrote Python and doxygen doc-

umentation.

John Ellison: Implemented the 3d correlation function;

documentation of 3d correlation function.

Zilong Du: Implemented the 3d correlation function.

Joe Zuntz: Wrote initial infrastructure, C testing setup,

and reviewed code.

Alexander Mead: Wrote halo-model code and documen-

tation

Shahab Joudaki: Performed benchmarking of angular

power spectra and correlation functions for galaxy clus-

tering, galaxy-galaxy lensing, and cosmic shear (includ-

ing intrinsic alignments); reviewed all CCL benchmarks;

contributed to implementation of background functions

and documentation.

Christiane S. Lorenz: Contributed to accurate high-

redshift cosmological background quantities and bench-

marked background splines.
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