45 research outputs found

    C-reactive protein serum levels as an early predictor of outcome in patients with pandemic H1N1 influenza A virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data for predicting which patients with pandemic influenza A (H1N1) infection are likely to run a complicated course are sparse. We retrospectively studied whether the admission serum C-reactive protein (CRP) levels can serve as a predictor of illness severity.</p> <p>Methods</p> <p>Included were all consecutive adult patients who presented to the emergency department (ED) between May-December, 2009 with a flu-like illness, a confirmed diagnosis of pandemic influenza A (H1N1) infection and a serum CRP level measured within 24 hours of presentation. Patients with a proven additional concurrent acute illness (e.g., bacteremia) were excluded. We used the ROC curve analysis, Kaplan-Meier curves and the Cox proportional hazard model to evaluate the predictive ability of CRP as a prognostic factor.</p> <p>Results</p> <p>Seventeen (9%) of the 191 enrolled patients were admitted to the intensive care unit (ICU), of whom eight (4%) required mechanical ventilation and three (2%) died. The median admission serum CRP levels were significantly higher among patients who required subsequent ICU care and mechanical ventilation than among patients who did not (123 mg/L and 112 mg/L vs. 40 mg/L, <it>p </it>< .001 and 43 mg/L, <it>p </it>= .017, respectively). A Cox proportional hazard model identified admission serum CRP levels and auscultatory findings over the lungs as independent prognostic factors for ICU admission. Admission serum CRP levels were the only independent prognostic factor for mechanical ventilation. Thirty days after presenting to the ED, none of the patients with admission serum CRP level <28 mg/L (lower tertile) required either ICU admission or mechanical ventilation. At the same time point, 19% of the patients with admission serum CRP level ≥70 mg/L (upper tertile) needed to be admitted to the ICU and 8% of the same upper tertile group required mechanical ventilation. The differences in the rates between the lower vs. upper tertile groups were significant (Log-Rank <it>p </it>< .001 for ICU and <it>p </it>< .024 for mechanical ventilation).</p> <p>Conclusions</p> <p>In our study group, serum CRP levels obtained in the early ED admission stage from patients presenting with pandemic H1N1 influenza A infection were found to serve as a useful gauge for predicting disease course and assisting in patient management.</p

    Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site.

    Get PDF
    Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB

    A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis

    Get PDF
    The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis . It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed

    Functional Characterization of Variations on Regulatory Motifs

    Get PDF
    Transcription factors (TFs) regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication i

    The Tissue-Specific Self-Pathogen Is the Protective Self-Antigen: The Case of Uveitis

    No full text
    corecore