31 research outputs found

    Bodily Sensory Inputs and Anomalous Bodily Experiences in Complex Regional Pain Syndrome: Evaluation of the Potential Effects of Sound Feedback

    Get PDF
    Neuroscientific studies have shown that human's mental body representations are not fixed but are constantly updated through sensory feedback, including sound feedback. This suggests potential new therapeutic sensory approaches for patients experiencing body-perception disturbances (BPD). BPD can occur in association with chronic pain, for example in Complex Regional Pain Syndrome (CRPS). BPD often impacts on emotional, social, and motor functioning. Here we present the results from a proof-of-principle pilot study investigating the potential value of using sound feedback for altering BPD and its related emotional state and motor behavior in those with CRPS. We build on previous findings that real-time alteration of the sounds produced by walking can alter healthy people's perception of their own body size, while also resulting in more active gait patterns and a more positive emotional state. In the present study we quantified the emotional state, BPD, pain levels and gait of twelve people with CRPS Type 1, who were exposed to real-time alteration of their walking sounds. Results confirm previous reports of the complexity of the BPD linked to CRPS, as participants could be classified into four BPD subgroups according to how they mentally visualize their body. Further, results suggest that sound feedback may affect the perceived size of the CRPS affected limb and the pain experienced, but that the effects may differ according to the type of BPD. Sound feedback affected CRPS descriptors and other bodily feelings and emotions including feelings of emotional dominance, limb detachment, position awareness, attention and negative feelings toward the limb. Gait also varied with sound feedback, affecting the foot contact time with the ground in a way consistent with experienced changes in body weight. Although, findings from this small pilot study should be interpreted with caution, they suggest potential applications for regenerating BDP and its related bodily feelings in a clinical setting for patients with chronic pain and BPD

    Matrix ChIP analysis of RNA polymerase II (Pol II) <i>Tnf-α</i> genes following unilateral kidney I/R and LPS injection.

    No full text
    <p>Sheared cross-linked renal cortex chromatin from mice were assayed using antibodies to the Pol II N-terminus and CTD modifications. ChIP DNA were analyzed at the Tnf-α first and last exon and CypA first exon in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input. Schematic of the genes is shown above the graphs; exons are shown as rectangles (taller and shorter rectangles represent translated and untranslated regions), lines represent introns. Black boxes shows location of the amplicon.</p

    Synchronous Recruitment of Epigenetic Modifiers to Endotoxin Synergistically Activated Tnf-α Gene in Acute Kidney Injury

    Get PDF
    <div><p>Background</p><p>As a consequence of acute kidney injury (AKI), proximal tubular cells hyperrespond to endotoxin (lipopolysaccharide, LPS) by exaggerated renal Tnf-α Production. This LPS hyperresponsiveness is transcriptionally mediated. The epigenetic pathways that control these responses are unknown.</p><p>Methods/Findings</p><p>We applied multiplex chromatin immunoprecipitation platform (Matrix ChIP) to explore epigenetic pathways that underlie endotoxin hyperresponsiveness in the setting of preceding unilateral renal ischemia/reperfusion (I/R) in mouse AKI model. Endotoxin exposure after I/R resulted in enhanced transcription, manifested by hyperresponsive recruitment of RNA polymerase II (Pol II) at the Tnf-α gene. At this locus, LPS but not I/R increased levels of Pol II C-terminal domain (CTD) phosho-serine2 &5 and induced dephosphorylation of the transcription-repressive histone H4 phospho-serine-1. In contrast, I/R but not LPS increased the transcription-permissive histone phosphorylation (H3 phospho-serine-10, H3.3 phospho-serine-31) at the Tnf-α gene. In agreement with these observations, I/R but not LPS increased activity of cognate kinases (Erk1/2, Msk1/2 and Aurora A) at the Tnf-α locus. Cross-talk of histone phosphorylation and acetylation synergize to active gene expression. I/R and LPS increased histone acetylation. (H3K9/14Ac, H4K5/8/12/16Ac, H2KA5Ac, H2BK4/7Ac). Levels of some histone acetyltransferases at this gene (PCAF and MOF) were increased by I/R but not by LPS, while others were induced by either I/R or LPS and exhibited endotoxin hyperresponsive patterns (GCN5, CBP and p300). The adaptor protein 14-3-3 couples histone phosphorylation with acetylation, and tethers chromatin modifiers/transcription elongation factors to target genes. Both I/R and LPS increased levels of 14-3-3 and several chromatin/transcription modifiers (BRD4, BRG1, HP-1γ and IKKα) at the Tnf-α gene, all exhibiting endotoxin hyperresponsive recruitment patterns similar to Pol II.</p><p>Conclusions</p><p>Our results suggest that I/R and LPS differentially trigger phosphorylation (Pol II and histone) and acetylation (histone) epigenetic pathways that interact at the Tnf-α gene to generate endotoxin hyperresponse in AKI.</p></div

    Analysis of renal <i>Tnf-α</i> expression following unilateral kidney I/R and LPS injection.

    No full text
    <p>Total RNA from mice renal cortex was used in RT reactions with random hexamers. cDNA was used in real time PCR with gene specific primers (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070322#pone.0070322.s004" target="_blank">Table S1</a>). mRNA level of a given gene in each sample was normalized to βactin transcript. Data are represented as mean±SEM, n = 6 mice in each group.</p

    Matrix ChIP analysis of histone acetyltransferases at the <i>Tnf-α</i> gene following unilateral kidney I/R and LPS injection.

    No full text
    <p>Sheared cross-linked renal cortex chromatin from mice were assayed using antibodies to histone acetyltransferase. ChIP DNA were analyzed at the Tnf-α first and last exon and CypA first in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.</p

    Matrix ChIP analysis of histone marks changes associated with transcription elongation at the <i>Tnf-α</i> genes following unilateral kidney I/R and LPS injection.

    No full text
    <p>Sheared cross-linked renal cortex chromatin from mice were assayed using antibodies to serine phosphorylated and lysine methylated histone H3. ChIP DNA were analyzed at the Tnf-α first and last exon and CypA first exon in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.</p

    Matrix ChIP analysis of permissive histone acetylation marks at and <i>Tnf-α</i> genes following unilateral kidney I/R and LPS injection.

    No full text
    <p>Sheared cross-linked renal cortex chromatin from mice were assayed using antibodies to acetylated histones and total histone H3. ChIP DNA were analyzed at the Tnf-α first and last exon and CypA first exon first in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.</p

    Matrix ChIP analysis of chromatin modifiers at the <i>Tnf-α</i> gene following unilateral kidney I/R and LPS injection.

    No full text
    <p>Sheared cross-linked renal cortex chromatin from mice were assayed using antibodies to chromatin modifiers. ChIP DNA were analyzed at the Tnf-α first and last exon and CypA first exon in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.</p

    Matrix ChIP analysis of kinases at the <i>Tnf-α</i> gene following unilateral kidney I/R and LPS injection.

    No full text
    <p>Sheared cross-linked renal cortex chromatin from mice were assayed using antibodies to active (phosphorylated) and total kinases. ChIP DNA were analyzed at the Tnf-α first and last exon and CypA first exon first in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.</p

    Additional file 1: Tables S1–S5. of Prolonged transfer of feces from the lean mice modulates gut microbiota in obese mice

    No full text
    Table S1. Taxonomic Assignments Table. Full taxonomic assignments in SILVA Taxonomy, as classified by Mothur. Taxa are given with bootstrap values for each taxonomic level. Taxa are classified to family, unless there was only one classifiable genus (or lower level) present in the family. Table S2. Serum biochemical parameters at the end of the experiment. Normal diet (ND), high-fat diet (HFD), HFD supplemented with feces of ND-fed mice (HFDS). Table S3. Differential taxa abundances between weeks 0 and 12 and weeks 0 and 28, tested with paired Mann-Whitney U-tests for each experimental group. Taxon = taxon denotation (full taxonomic assignments in SILVA taxonomy are presented in Additional file 1: Table S1); Mann-Whitney U statistic = statistic from paired Mann-Whitney U-tests; pValue = p-value from paired Mann-Whitney U-test; qValue = p-value after FDR correction. Table S4. Results of model comparison for taxa. Taxon = taxon denotation (full taxonomic assignments in SILVA taxonomy are presented in Additional file 1: Table S1); pValue time and pValue diet = p-values for comparisons between null models, models including time and models including time and diet, respectively; qValue time and diet = p-values after FDR correction. Table S5. Differential taxa abundances at 12 and 28 weeks. Taxon = bacteria taxon in SILVA taxonomy, genera (if applicable) are given in parentheses; week = week of experiment; comparison = groups compared; mean 1 group = mean abundance of taxon in first group in comparison field; mean 2 group = mean abundance of taxon in second group; pValue = p-value of Mann-Whitney U-tests; qValue = p-value after FDR correction. Taxa that were differentiated in two groups at both time points are highlighted in bold text. (XLSX 60 kb
    corecore